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Introduction

Panel Method Technology is commonly used in industrial applications

for aeronautical and naval fluid dynamic time-dependent calculations. Some

critical points of the classical panel methods have been overcome by a new

BEM open-source method, called PaMS (Panel Method Solver), developed

by using unstructured panel discretization, and by introduction of a wide

variety of boundary and closure conditions. However, the impossibility to

analyse the phenomena of intersection of wakes with body surfaces is the

most significant drawback preventing the even more widespread use of these

codes for some applications like, for example, vertical-axis turbines, rotors,

intersection of the wing wake with the downstream horizontal plane. In panel

methods, this drawback is overcome by introducing vorton wakes.

It is well-known that vortex methods are based on the discretization of

the vorticity field in which the evolution of the computational elements is

determined, in the Lagrangian description, by the governing equations. The

automatic adaptivity of the computational elements and the rigorous treat-

ment of boundary conditions at infinity makes classical vortex methods at-

tractive. In this thesis, a new vortex method, called vorton method, will be

analyzed to model wakes in panel methods. As it will be shown, the vor-

ticity is replaced by a set of vortons which will be defined and analyzed in

terms of potential and velocity fields, and the equations governing the vorton
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evolution will be presented.

In order to discretize the wake into vortons, we will describe a vorton

wake model in which the vortons are generated by the classical wake panels.

Particularly, several models of conversion of wake panels to vortons will be

analyzed in order to choose one that gives the higher accuracy.

Once the vorton wake model will be chosen, the panel method solver

PaMS with vorton wakes will be validated by means of several test cases. In

the end, different simulation examples will be made.
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Chapter 1

PANEL METHODS: A BRIEF

HISTORY

The panel methods are boundary element methods for solving the po-

tential flow around aerodynamic bodies, and they were first studied in 1958,

when Smith and Pierce, while working at Douglas Aircraft Company, used a

discrete form of the boundary integral equations in order to solve the poten-

tial flow around bodies of revolution. The early panel methods were almost

exclusively of Neumann type, using either source or vorticity distributions

over the surface. The finite element and finite difference methods were often

substituted by the panel methods in computations characterized by complex

geometric configurations, especially for external flows.

Though the versatility includes three-dimensional arbitrary body config-

urations, these constant-strength source panel methods can solve only non-

lifting problems. In 1967, a work presented by Hess and Smith showed that

the computation of forces on lifting bodies by using panel methods is possible

for both two-dimensional and three-dimensional bodies.

A wide variety of practical problems in aerodynamics has been solved
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using the panel methods, with the velocity potential constructed from dis-

tributions of sources and normal dipoles on each panel of the discretized

boundary surface. In fact, the predictions of such methods have been in

a good agreement with experiment over a surprisingly large range of flow

conditions. Hess and Smith used constant-strength distributions on quadri-

lateral panels and derived closed-form expressions from the matrix elements

by analytical evaluation of the surface integrals over each panel: the surface

integrals of the source and doublet distributions are reduced to line integrals

around the perimeter of every single panel [45].

By 1973, 3D subsonic panel methods began to affect the design and anal-

ysis of aircraft configurations at Boeing. Particularly, the Boeing TA230

program was one of the first computer programs for attacking arbitrary po-

tential flow problems with Neumann boundary conditions which combined

the source panel scheme of the Douglas Neumann program with variations

of the vortex lattice technology. The TA230 program was characterized by

its ability to handle any well-posed Neumann boundary value problems. In

the same year, Boeing acquired a CDC 6600 for scientific computing, which

consented to solve problems involving hundreds of panels, and so to model

full configurations with the fidelity necessary to understand component in-

teractions.

The TA230 panel code was used in the initial design phase of the B747

Space Shuttle Carrier Aircraft (see figure 1.1). In order to minimize the cost

of the program, this panel method was extensively used for several purposes.

At the conclusion of the design phase, the final selected configurations were

tested in the wind tunnel to verify predictions with an excellent agreement

resulting between the analyses and wind tunnel data.

The success of the TA230 code caused the strong demand among Boeing

4



PANEL METHODS: A BRIEF HISTORY

Figure 1.1: B747 with Space Shuttle Orbiter - lift coefficient [32].

aerodynamicists and the beginning of the paradigm shift toward acceptance

of CFD as an equal partner of the wind tunnel and flight test in the analysis

and design of commercial aircraft. However, this code presented some disad-

vantages. First, to model correctly a complex flow for which no previous user

experience was available, the engineer had to understand the mathematical

properties and limitations of potential flow. In addition, numerical problems

arose when panel shapes and sizes varied, and fine paneling in regions of rapid

flow variations often forced fine paneling in otherwise. Furthermore, since

numerical accuracy was strongly affected by local curvature and singularity
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strength gradient, excessive numbers of panels were required. Consequently

to these limitations of the TA230 code, Boeing developed a panel method

under contract to NASA resulted in PAN AIR / A502, on quadratic basis,

flat-sub-element high order panel method [32].

During the 1980s, several variations of different complexity of the surface

singularity boundary element method were introduced for potential transonic

and supersonic flows. Particularly, high order methods were developed for

the benefits of increasing solution accuracy as well as for satisfying the so-

lution continuity requirements imposed by supersonic flow applications. In

fact, linear distributions have been used on triangular panels to provide a

more continuous description of the solution. Moreover, steady surface panel

methods were also extensively applied to the calculation of wake simulations.

Large-scale panel method solutions were obstacled by limitations on com-

putational time and memory although the great advances in computational

power in the 1980s. Moreover, limitations on the practical use of panel meth-

ods existed due to the coarseness of surface discretizations though solutions

of several thousand panels became a routine performed on large computers.

Development in three dimensional solvers was followed by two dimensional

panel methods which were being developed and used heavily for inverse airfoil

design for a long time: XFOIL is an example. Furthermore, the panel meth-

ods were coupled with the use of boundary layer for incorporating viscous

effects.

Applications of unsteady three-dimensional panel methods to aerody-

namic problems became extensive in the late 1980s with solutions includ-

ing both time domain and frequency domain methods. The studies by Katz

[33][8] are examples of three-dimensional time domain panel methods, ex-

tended also to the calculation of multiple bodies.

6
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In the late 1980s PMARC (Panel Method Ames Research Center) [7][6]

was created with in NASA Ames Research Center to predict numerically flow

fields around complex three-dimensional geometries and was later released

as a controlled access computer program. PMARC was derived from a code

named VSAERO (at the present time, one of the most used panel method

softwares) that was developed for Ames Research Center by Analytical Meth-

ods, Inc. The first objective in the development of this code was a fast code

with an open source to facilitate making modifications or adding new fea-

tures. The second objective was to create an adjustable-size panel code.

PMARC (at the present time, there exists also the modern version CMARC,

written in C++) included several advanced features such as internal flow

modeling for ducts and wind tunnel test sections and a time-stepping wake

model which allows the study of time-dependent motions, including problems

involving relative motion.

Although by the 1990s panel methods had largely given way to higher

fidelity Navier-Stokes and Euler solvers, several Lagrangian based approaches

were developed. Particularly, the vorton method, also referred to as vortex

particle method, was refined and further studied for the simulation of largely

vortical flow [53][65][2] and some history and development of vortex particle

methods will be described in the following section.

Today, the panel methods continue to be widely used, in particular, for

initial design studies due to their ease of use (result of the surface discretiza-

tion only).

7
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1.1 Vorton methods: background

Vorton methods were first studied in the 1930s when Rosenhead per-

formed a dynamical vortex calculation using singular point vortices in order

to solve the problem of potential flow around bodies and so to compute the

loads around the aerodynamic configurations [52], later repeated by several

authors. Rosenhead wrote an expression for a desingularized vorton and

Leonard discussed vorton core functions for two-dimensional particle meth-

ods (observe that desingularizion the Biot-Savart equation is different in us-

ing finite-core vortons, though both make the vortex sheet well-posed) [55].

Moreover, Rosenhead was the first to consider the evolution of the vorticity

discretized into element vortices.

The early studies on vorton methods in three-dimensions used vortex

filament approximations to account for the domain vorticity: Chorin pre-

sented three-dimensional vortex blob calculations, though stretch was com-

puted using a local segment approximation, making essential a vortex fila-

ment method. The classical vortex filament methods were constructed for

modeling vortex filament evolution in inviscid flows. In this sense, the use of

a vorton represents another possibility to investigate perfect ideal flows where

the computational elements in this case are spherical blobs of vorticity given

by approximating thick vortex structures [38].

While the vortex filament method and the sheet method need to store

the connectivity information, the first vorton method proposed by Beale and

Majda [10] was characterized by the fact that the vortex blob positions and

strengths were updated in a Lagrangian manner with no connection between

the blobs. They first proposed using spherical particles for three-dimensional

calculations, using Lagrangian update to compute stretch, and forgoing all

element connection information.
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Winckelmans and Leonard [65] presented a comparison of singular and

regularized particle methods and their vorticity update equations.

Vorticity representation in panel methods has been traditionally limited

to vorticity sheet and vortex filament approaches: vortons are used commonly

for representing vorticity in unsteady two-dimensional problems.

At the present state of development, the combined three-dimensional

panel method and vortex particle approach represents an important tool

in many different applications: body surfaces, container boundaries, free-

surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields

[57][45][62][18][43][2][39]. Moreover, many current vorton methods are used

for the simulation of turbulent flows.

The most important advantage of vorton methods is that they are the

answer to a common problem characterizing the panel methods: intersection

of the wake with downstream body surfaces. The use of vorton wakes permits

to model the unsteady aerodynamics of aircraft in close proximity, which is

important for quantifying the wake-vortex hazard on following aircraft, such

as the method presented by Ramsey and Milgram [51], based on extensions

of unsteady vortex lattice able to reduce numerical instabilities associated

with discretized vortex sheets. In addition, these methods do not require a

sufficiently high density of vortex particles to model practically and accu-

rately the vortex sheet, even though some authors support the opposite [63].

Moreover, these approaches do not suffer from large computational times

and low accuracy but ever cause the reduction of the computational times

and the increase in accuracy which depends on many things, most notably

the choice of cutoff function and core radius, and the initialization of the

vorticity distribution.

9



Chapter 2

INCOMPRESSIBLE AND

INVISCID FLOWS

In this chapter, the emphasis is on the incompressible and inviscid flows

on which classical panel methods are based. In order to model the wake by

means of the vorton method, the velocity field will be defined by the well-

known Helmholtz decomposition. For inviscid flows, the velocity field may

be described by means of the decomposition into two velocity components

that have a kinematic significance: a rotational component counts for the

velocity field due to the vorticity in the flow whereas a potential component

is used in order to enforce the boundary conditions and to ensure the com-

patibility of the velocity and the vorticity field in the presence of boundary.

In order to consider the inviscid evolution of the vorticity field generated by

the aerodynamic configurations, the mechanism of generation and shedding

of the vorticity from the surface of the body into the wake is expressed in

terms of the Kutta condition.
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2.1 The domain

Consider the external flow field surrounding a three dimensional lifting

body. The domain of interest includes all fluid external to the body surfaces

(see figure 2.1). In general, the lifting configuration (e.g.: aircraft) consists

of the wing, the vertical tail and the horizontal stabilizer. Each lifting part

has a sharp trailing edge from which trailing vortex wakes sheds.

Figure 2.1: the fluid domain.

Prescribe a three-dimensional coordinate system to describe mathemat-

ically the flow of fluid through three-dimensional space. Consider the most

common orthogonal coordinate system: the cartesian coordinate system. The

x, y, and z are mutually perpendicular, and i, j, and k are unit vector in the

x, y, and z directions, respectively. A arbitrary point P in the domain at a

given time is located by the position vector r, where

r = r(x, y, z, t) = x(t)i + y(t)j + z(t)k (2.1)

11
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If the fluid velocity is denoted by U , it can be expressed as

U = U(x, y, z, t) = U
x
(t)i + U

y
(t)j + U

z
(t)k (2.2)

where U
x
(t), U

y
(t) and U

z
(t) represent the scalar component of U , at a given

time, along the x, y, and z directions, respectively.

The flow around the body is assumed to be inviscid and incompressible,

any vorticity in the domain is localized on the thin wake regions trailing the

lifting surfaces; these assumptions greatly simplify the form of the Navier-

Stokes equations, commonly used to solve fluid-dynamic problems.

First, consider the hypothesis of inviscid flow. A flow that is assumed to

involve no friction, thermal conduction, or diffusion is called inviscid flow.

This kind of flow do not exist in nature but there are many practical flows

where the influence of mass diffusion, viscosity, and thermal conduction is

small. In these cases, it is possible to model the inviscid flows.

Theoretically, the flow is assumed to be inviscid in the limit as the

Reynolds number Re goes to infinity where the Reynolds number is physi-

cally a measure of the ratio of inertia forces to viscous forces in a flow. For

many practical problems, even though this high but finite parameter, the in-

fluence of the diffusive effects is limited to a very thin region adjacent to the

body surface. This limited region is defined as the boundary layer and the

flow is essentially inviscid outside this thin region. Therefore, the considered

external domain is the region outside the boundary layer. For such Re, the

flow is assumed to be inviscid.

It is well-known that inviscid theory by itself cannot give satisfactory

results for the prediction of the total drag.

Now, consider the hypothesis of incompressible flow. Denote the density

by ρ. A flow in which the density ρ is constant is called incompressible. All

flows are compressible where a flow is called compressible where the density

12
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is variable. Really incompressible flow does not occur in nature. Similarly

to the discussion of inviscid flow, there are many aerodynamic problems that

can be modeled as being incompressible. Theoretically, the flow of gases is

assumed to be incompressible for M < 0.3 where the Mach number M is the

ratio of the flow velocity to the speed of sound and like the Reynolds number,

it is a powerful parameter in the study of gas dynamics. Practically, the flow

of gases at low Mach number is essentially incompressible.

The equations of motion for a homogeneous fluid in the absence of reac-

tions or mass diffusion are based on three physical conservation laws1 [31].

Since the average measurable values of the flow properties are desired for

aerodynamic applications, the assumption of continuous distribution of mat-

ter is imposed: this assumption is known as continuum. So the governing

equations of fluid motion are derived from conservation of mass, momentum

and energy equations. The resulting system of equations is known as the

Navier-Stokes equations.

Since the flow is assumed to be isothermal, this leads generally to a de-

coupling of the energy equation from the other conservation laws. Therefore,

the velocity and pressure fields are computed initially, and subsequently the

energy equation may be solved for the temperature field. For flows involving

temperature variations, the coupling between the temperature field and the

fluid motion can occur through various effects, such as variations of viscosity

or heat conductivity with temperature, influence of external forces function

of temperature.

Moreover, this system of equations for incompressible flow presents a

particular situation in which the unknown pressure does not appear under a

time dependence form due to the non-evolutionary character of the continuity

1When a fluid is a composition of several chemical species with mass diffusion
and/or chemical reaction, additional conservation laws may be required.
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equation.

At this point, the vorticity will be briefly examined in order to introduce

the role played by the vortex wake in the following chapters. This quantity is

simply twice the angular velocity and is denoted by the vector ω. We know

the following important result for the vorticity:

ω = ∇ × U (2.3)

In a velocity field, the curl of the velocity is equal to the vorticity. Since the

flow is rotational only on the thin wake region whereas it is assumed to be

irrotational otherwise, ∇×U 6= 0 at every point in the wake and ∇×U = 0

at every point in the remaining domain.

An important result is the relation existing between vorticity and circu-

lation. Assume that the surface is in a flow field and consider any point P

on this surface. From Stokes’theorem2

Γ = −

∮

C

U · ds = −

∫ ∫

S

(∇× U) · dS (2.4)

Therefore, the circulation about a curve C is equal to the vorticity integrated

over any open surface bounded by C. Hence, if the flow is irrotational every-

where within the contour of integration, then Γ = 0, otherwise circulation

results different from zero.

The importance to make a distinction between rotational and irrotational

flows lies in the fact that irrotational flows are much easier to analyze than

rotational flows even though the applications of irrotational flow are limited.

2Consider an open area S bounded by the closed curve C and let A be a vector
field, the line integral of A over C is related to the surface integral of A over S by
Stokes’ theorem: ∮

C
A · ds =

∫ ∫

S
(∇× A)dV

14
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Once the fluid domain have been described, see how to analyze the flow

field. In the following section, it will be shown how the velocity vector can be

expressed by means of a scalar potential component and a vector potential

component by the Helmholtz decomposition.

2.2 The Helmholtz theorem

In a hydrodynamic context, Helmholtz showed in 1858 that any vector

field that vanishes at infinity can be decomposed into two parts: one is an

irrotational component which can be expressed by the gradient of a scalar

function and the other is a rotational part which can be expressed by the curl

of the vector function. This is the Helmholtz theorem which has very impor-

tant applications in many physical problems, like the simulation of incom-

pressible fluids (Navier-Stokes equations), or in electromagnetism (Maxwells

equations).

As shown by Gui and Dou [28], the Helmholtz theorem states that if F

is an arbitrary continuous vector function with all the second order partial

derivatives in free space, and its surface integration or its any partial deriva-

tive is zero at infinity, then this vector function can be defined as the sum of

the gradient of a scalar function and the curl of a vector function, that is

F = ∇φ + ∇ × Ψ (2.5)

with

φ =

∫

V

∇ · U(r)

4π|r|
dV (2.6)

Ψ =

∫

V

∇× U(r)

4π|r|
dV (2.7)

where 1/(4π|r|) is the Green’s function. Equations (2.6) and (2.7) will be

derived by means of the Green’s Identities in the continuation.
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If the field function is any first order continuously differentiable vector

function with all the second order partial derivatives bounded at infinity,

then this vector function can be completely and uniquely decomposed into

the sum of the gradient of a scalar function and the curl of a vector function

as shown in formula (2.5).

Note that the applicable range of above proposition is restricted to simply

connected domain with single boundary surface. Since the fluid domain

defined in the previous section, is a simply connected domain therefore the

above proposition is applicable in the case of interest.

Observe that, for the vector function F , the following vector identities

result to be valid

∇ · (∇φ + ∇ × Ψ) → ∇2φ = ∇ · F (2.8)

∇ × (∇φ + ∇ × Ψ) → ∇(∇ · Ψ) − ∇2Ψ = ∇ × F (2.9)

where, by definition

∇ · (∇ × Ψ) = 0 (2.10)

∇ × (∇φ) = 0 (2.11)

Note that, for the Helmholtz decomposition, the chose of Ψ can be arbi-

trary, therefore Ψ may be solenoidal or not divergence-free. Instead, as it is

shown in further on, the characteristics of the vector F depends on another

considerations.

Now, if the vector potential Ψ and the vector function F are solenoidal,

equations (2.8) and (2.9) become

∇2φ = 0 (2.12)

− ∇2Ψ = ∇ × F (2.13)
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Equations (2.12) and (2.13) are Laplace’s equation and Poisson’s equation,

respectively. Therefore, the problem can be worked out by solving one

Laplace’s equation for the irrotational component and one Poisson’s equation

for the solenoidal component. Equations (2.6) and (2.7) are the solutions of

Laplace’s equation and Poisson’s equation, respectively.

2.2.1 The velocity definition

By means of the Helmholtz decomposition, the velocity vector can be

expressed by means of a scalar potential component and vector potential

component.

Regarding the rotationality of the flow field due to thin vortex wake, it’s

possible to introduce a stream function such that

UΨ = ∇× Ψ (2.14)

where Ψ(x, y, z, t) is the vector potential for the velocity in the flow domain.

Observe that the the definition of Ψ is statement of the mass conservation.

In fact, Ψ automatically satisfies the continuity equation, since the gradient

of the curl of any vector is identically zero. From a physical point of view,

the lines of a constant Ψ represent stream lines, and the difference in the

values of Ψ between two streamlines gives the volumetric flow rate between

the two.

One important consequence of irrotationality is the existence of a velocity

potential. Indeed, the equation ξ = ∇× U = 0 is a necessary and sufficient

condition for the existence of a potential φ such that

Uφ = ∇φ (2.15)

where φ(x, y, z, t) is the scalar potential for the velocity in the flow domain.
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This scalar potential consents the substitution of a three-component vector

by a single scalar as the principle unknown in theoretical investigation.

The velocity potential is analogous to stream function in the sense that

derivatives of φ yield the velocity but there are distinct differences between

φ and Ψ. First, the velocity is obtained by differentiating φ in the velocity

direction, whereas Ψ in the direction normal to the velocity direction. Second,

the velocity potential is defined only for irrotational flow, whereas the stream

function can be defined for rotational or irrotational flows.

Finally, the fluid velocity, U(r, t) at a given point in the domain is de-

fined as the superposition of a scalar potential component, Uφ(r, t), and a

solenoidal vector potential component, UΨ(r, t), by a Helmholtz decomposi-

tion:

U(r, t) = Uφ(r, t) + UΨ(r, t) = ∇φ + ∇× Ψ (2.16)

In the inviscid and incompressible flows, the Helmholtz decomposition is not

usually considered. However, as the traditional scalar potential boundary el-

ement method formulation, so the vector potential boundary element method

formulation will be described in the following chapters.

2.3 The scalar potential relationship:

Laplace’s equation

Consider the conservation equation:

∂ρ

∂t
+ ∇ · (ρU) = 0 (2.17)

For incompressible flow, ρ(x, y, z, t) is constant. Therefore,

∂ρ/∂t = 0 (2.18)
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and

∇ · (ρU) = ρ ∇ · U (2.19)

Then, the governing continuity equation for a fluid with a constant density

is expressed in differential form as:

∇ · U = 0, (2.20)

where ∇ · U is physically the time rate of change of the volume of a moving

fluid element per unit volume. Substituting the velocity potential relation-

ship into the above relationship, the resulting equation simplifies to:

∇ · (∇φ + ∇× Ψ) = ∇ · (∇φ) = ∇2φ = 0 (2.21)

This is Laplace’s equation for the velocity scalar potential. Note that Laplace’s

equation is a linear differential equation and solutions of Laplace’s equation

are called harmonic functions: this is an elliptic differential equation that

results in a boundary-value problem. Since the fluid’s viscosity has been ne-

glected, the no-slip boundary condition on a solid-fluid boundary cannot be

enforced.

Moreover, the fact that Laplace’s equation is linear is very important,

because the superposition of any solution of a linear differential equation is

also a solution of Laplace’s equation. This fact implies that the solution of a

complicated flow pattern for an incompressible flow can be obtained as the

sum of a number of elementary incompressible flow solutions.
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2.4 The vector potential relationship:

Poisson’s equation

Remember that the vorticity field ω(r, t) is defined as the curl of the

velocity:

∇× U = ω (2.22)

Thus, by using Helmholtz decomposition in above equation, this becomes:

∇× (∇φ + ∇× Ψ) = ω (2.23)

Since the curl of a gradient of a scalar is zero, the vorticity field is:

∇× (∇× Ψ) = ω (2.24)

By using the vector Laplacian relation, equation (2.24) becomes:

∇× (∇× Ψ) = ∇ (∇ · Ψ) −∇2Ψ = ω (2.25)

Since the vector potential is solenoidal, the vorticity field is simply:

∇2Ψ = −ω (2.26)

which is Poisson’s equation relating the vector potential to the vorticity.

2.5 The velocity induced by vorticity: the

Biot-Savart law

Determine, now, the velocity induced by a vorticity distribution (see fig-

ure 2.2). Consider Poisson’s equation ω = −∇2Ψ. The solution of this

equation, using Green’s theorem, is

Ψ =
1

4π

∫

V

ω

|r0 − r1|
dV (2.27)
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where Ψ is evaluated at point P which is a distance r0 from the origin and

is obtained by integration of the vorticity at point r1 within the volume

V .Equation above and equation (2.7) are the same relationship. Clearly, the

velocity is the curl of Ψ

UΨ =
1

4π

∫

V

∇×
ω

|r0 − r1|
dV (2.28)

dl

x

dS

G

r
0

z

r
1

x
y

P
r
2

Figure 2.2: the velocity at point P induced by a vortex distribution.

Consider, then, an infinitesimal piece of the vorticity filament ω. Select

the cross section area dS so that it is normal to ω and the direction dℓ on

the filament is

dℓ =
dℓ

ω
ω (2.29)
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Since the circulation Γ and dV are, respectively

Γ = ω dS (2.30)

dV = dS dl (2.31)

then the integral term becomes

∇×
ω

|r0 − r1|
= ∇× Γ

dℓ

|r0 − r1|
= Γ

dℓ × (r0 − r1)

|r0 − r1|
3

(2.32)

By substituting the above result in equation (2.28), resulting equation is

the Biot-Savart law, which states

UΨ =
1

4π

∫

V

Γ
dℓ × (r0 − r1)

|r0 − r1|
3

dV (2.33)

or in differential form

∆UΨ =
Γ

4π

dℓ × (r0 − r1)

|r0 − r1|
3

(2.34)

In case of a volume distribution of vorticity, a similar manipulation of equa-

tion (2.28) leads to the following result

UΨ =
1

4π

∫

V

ω × (r0 − r1)

|r0 − r1|
3

dV (2.35)

2.5.1 The velocity induced by a straight vortex

segment

The first to make use of a vortex filament concept in the analysis of

invishid, incompressible flow was Helmholtz which established several basic

principles known as Helmholtz theorems. First, the strength of a vortex

filament is constant along its length. Second, a vortex filament cannot end
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in a fluid: it must extend to the boundaries of the fluid which may be ±∞

or form a closed path.

The derivation of the velocity induced by a straight vortex segment dℓ

is based on the the Biot-Savart law. As a vortex line cannot start or end

in a fluid, the contribution of a segment is one of a section of a continuous

vortex line. Moreover, the components of the velocity induced by this vortex

segment will be only tangential components.

Let r1 and r2 be the positions of the two edges of the vortex segment.

The vector connecting the edges is

r0 = r2 − r1 (2.36)

Then, the distance d and the cosines of the angles β1 and β2 are

d =
|r1 × r2|

|r0|
(2.37)

cos β1 =
r0 · r1

|r0| |r1|
(2.38)

cos β2 =
r0 · r2

|r0| |r2|
(2.39)

The velocity UΨ1,2
has the direction normal to the plane defined by the point

P and the vortex edges 1, 2 and the directional vector is given by

r1 × r2

|r1 × r2|
(2.40)

By substituting these quantities, the induced velocity is

UΨ1,2
=

Γ

4π

r1 × r2

|r1 × r2|
r0 ·

(
r1

r1

−
r2

r2

)
(2.41)

Constant-strength vortex line segments can be used to model the wing or the

wake for lifting flows, as provided in chapters 2 and 3.
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2.6 The vorticity evolution equation

The vorticity evolution equation is derived from the Euler equations,

∂U

∂t
+ U · ∇ U = −

∇p

ρ
+ ν∇2U (2.42)

where ρ is the fluid density, p is the pressure and ν is the cinematic viscosity.

Taking the curl of above equation, the resulting equation for the vorticity

evolution in the domain is

∇×
∂U

∂t
+ ∇× (U · ∇ U) = −∇×

(
∇p

ρ

)
+ ∇× (ν∇2U) (2.43)

For fixed reference frames, the first term on the left side becomes

∇×
∂U

∂t
=

∂(∇× U)

∂t
=

∂ω

∂t
(2.44)

Similarly, the last term on the right side becomes

∇× (ν∇2U) = ν∇2ω (2.45)

Now, since there exists the identity ∇×∇ · = 0, the pressure term vanishes,

provided that the density is uniform

∇×

(
∇p

ρ

)
= 0 (2.46)

The inertial term U · U can be rewritten as

∇× (U · ∇ U) = ∇

(
U2

2

)
− U × ω (2.47)

and then the term ∇× (U · ∇ U) can be written

∇× (U · ∇ U) = ∇×∇

(
U2

2

)
−∇× (U × ω) (2.48)

= U · ∇ ω − ω · ∇ U + ω(∇ · U) + U(∇ · ω) (2.49)

= U · ∇ ω − ω · ∇ U (2.50)
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Putting everything together, the vorticity equation results

∂ω

∂t
+ U · ∇ ω = ω · ∇ U + ν∇2ω (2.51)

where the first term ω · ∇ U on the right hand side represents the vorticity

stretching (or how the strength and magnitude of the vorticity changes as

it is exposed to velocity gradients in the fluid field). In chapter 2 it will be

discussed that the stretching term may be neglected in certain applications.

Since the flow is assumed to be inviscid (Re → ∞), then the vorticity

can be rewritten as
∂ω

∂t
+ U · ∇ ω = ω · ∇ U (2.52)

Observe that, for vary high values of the Reynolds, the vorticity that is

created at the body surface is convected along with the flow much faster

than it can be diffused out across the flow. So the vorticity remains in

the confines of the thin region that includes the boundary layer and the

trailing wake. The fluid in the outer part of the fluid domain is effectively

irrotational. However, since the fluid has been assumed to be ideal in this

thesis, the vorticity is only confined in the wake: the boundary layer does

not exist in ideal fluids.

Recall, now, that the evolution equation for a material line element δℓ

can be written as follow:
Dδℓ

Dt
= δℓ · ∇ U (2.53)

It is clear that vortex lines move as material lines for inviscid flows.

Recalling, moreover, that a vortex tube is defined as the set of vortex

lines that perforate a given surface part S and the circulation of a vortex

tube is the same for all oriented surface patches that define the vortex tube

due to free divergence of ω, the circulation of a vortex tube is conserved for

inviscid flows. Vortex tubes move as material volumes and they conserve
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their circulation. All these facts represent the basis for the method of vortex

filaments.

2.7 The boundary conditions

Consider the incompressible flow fields over different aerodynamic bodies.

It is clear that each flow is going to be distinctly different because of the

different geometry. But these different flows are all governed by the same

equations: ∇2φ = 0 and ∇2Ψ = −ω. How, then, can the exact solution be

found? The answer to these questions lies in the fact that, as known, in every

single mathematic model, the boundary conditions must be considered like

integral part of the same model. Moreover, in this unsteady flow problem,

the unsteady nature of the boundary conditions must be considered for the

solution uniqueness for all times. This unsteady nature can be due to changes

in time of the velocity vector of the uniform flow that collides the body, or

changes in time of the position and the form of the body surface, or changes

in times of the form of possible flexible surfaces like the wake and the surfaces

of separation between different flows. These changes in time require the time

updating of the boundary conditions.

Therefore, the boundary conditions need to be specified on all solid sur-

face and at infinity, and updated in time. Moreover, to analyze aerodynamic

bodies, a wing trailing edge condition (Kutta condition) that imposes a con-

dition of smoothness on the flow field at the trailing edge is necessary .

2.7.1 Infinity boundary conditions

Since the boundary is located far away so that the flow properties on

the boundary are not influenced by the body, then it is at infinity where
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the disturbances due the body moving through a fluid that initially at rest

decays to zero in all directions. Hence, at infinity,

U(r, t) = ∇φ + ∇× Ψ = U
∞

(2.54)

These are the boundary conditions on velocity at infinity.

2.7.2 Wall boundary conditions

Regarding the wall boundary condition, since the body has a solid surface,

then the flow can not penetrate the surface. For viscid flows, the velocity is

zero at the surface due to the friction between the fluid and the solid surface.

However, since the flow is assumed to be inviscid, the velocity at the surface

can be finite and tangent to the surface because the flow cannot penetrate

the surface or not tangent to the surface for the case of a solid boundary

with transpiration. For this work, it is assumed the case of solid surfaces

with not transpiration. Clearly, this wall tangency condition implies a zero

component of velocity normal to the surface.

Let n be a unit vector normal to the surface. In terms of the vector and

scalar potentials, the flow tangency conditions can be written as:

U · n = (∇φ + ∇× Ψ) · n = 0 (2.55)

Observe that only the normal velocity boundary condition is applied at the

wall, because of the inviscid flow assumption. For the viscid flows, the con-

ditions to apply to the body surface are two: one is the normal velocity

boundary condition, other is the tangent velocity condition.
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2.8 The wing trailing edge Kutta condition

The net force produced by surfaces with sharp geometric cusps when the

body moves relative to a fluid, is due to the pressure distribution over the

body surface. Flows from moving around these cusps are impeded by the

fact that these requires infinite pressure stresses and therefore the flows tend

to leave smoothly the sharp corner and shed a trailing shear wake. Since the

flow is assumed to be inviscid and irrotational, a Kutta condition must be

applied to all wing trailing edges for the physicalness of the solution. In fact,

the Kutta condition states that the flow leaves the sharp trailing edge of an

airfoil smoothly and the velocity there is finite.

In the case of aerodynamic bodies, the capacity to manage the following

Kutta wake, if necessary, its fluctuations cover an important role, so the wing

trailing edge Kutta condition must be applied in time.

Moreover, since the trailing edge angle is finite, the normal component

of the velocity, from both sides of the airfoil, must vanish. For a continuous

velocity, this is possible if the pressure difference is zero:

∆p
T.E.

= 0 (2.56)

this is the Kutta condition which requires that there is no pressure jump

across the trailing edge.

Additionally, this can be obtained by requiring that the flow above the

wing be vorticity free. The Kutta condition along the trailing edge, so that

the vorticity component parallel to the trailing edge (γ
T.E.

) is zero, results:

γ
T.E.

= 0 (2.57)

In order to prescribe the streamwise vorticity release at the trailing edge,
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a linearized version of the pressure continuity at the trailing edge is used

φupper − φlower = ∆φwake (2.58)

Here, the subscripts upper and lower refer to points on the upper and lower

surfaces of the trailing edge of the wing. The flow field without and with the

imposition of the Kutta condition is presented in figure 2.3.

Figure 2.3: the flow field at the wing trailing edge without (left) and with (right)
the imposition of the Kutta condition.

For unsteady flows, a time dependent component of the Kutta condition is

also enforced. This additional condition requires that any increase in bound

vorticity on the wing must be balanced by an equivalent increase in vorticity

in the wake. This increased vorticity is oriented in the direction parallel to

the trailing edge. The formal statement of the condition is the combined

change with respect to time of the wing bound circulation and the wake

circulation add to zero:
[
dΓspan

dt

]

wing

= −

[
dΓspan

dt

]

wake

(2.59)

where Γ represents the circulation strength of the wing and wake. Hence,

the rate at which body vorticity increases must be equal and opposite to the

rate of vorticity shed into the wake.
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2.9 The Unsteady Bernoulli equation

The pressure field can be computed by Bernoulli equation, once the flow

field is determinate. The Bernoulli equation is the most widely used equa-

tion in fluid mechanics, and assumes frictionless flow with no work or heat

transfer.

Since this thesis presents a potential-vorticity approach, the applicable

unsteady Bernoulli equation will be briefly derived, starting from the incom-

pressible Euler equations:

∂U

∂t
+ U · ∇ U = −

∇p

ρ
(2.60)

All space excluding the trailing vortex wake region have zero vorticity, there-

fore the resulting equation is:

∂U

∂t
+

1

2
∇|U |2 = −

∇p

ρ
(2.61)

By using the Helmholtz decomposition, the above equation becomes:

∂(∇φ) + ∂(∇× Ψ)

∂t
+

1

2
∇|∇φ + ∇× Ψ|2 = −

∇p

ρ
(2.62)

Collecting similar terms, and re-arranging, the above equation results

∂(∇φ)

∂t
+

∂(∇× Ψ)

∂t
+

1

2
∇ |∇φ + ∇× Ψ|2 +

∇p

ρ
= 0 (2.63)

Now, integrating the Bernoulli equation along the streamline from surface

point x1, to a farfield reference point at ∞ where the velocity is zero since

the body moves in the domain, and p = p∞ result in:
∫ px1

∞

∂(∇× Ψ)

∂t
dC +

(
∂φ

∂t x1

+
1

2
|∇φ + ∇× Ψ|2x1

)
=

p∞ − px1

ρ
(2.64)

Therefore, the term ∂φ
∂t

, defined in an Eulerian reference frame, can be com-

puted by converting of a body Lagrangian reference frame:

∂φ

∂t
|eulerian =

∂φ

∂t
|body − U · ∇φ (2.65)
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The overall unsteady Bernoulli equation, used to determine the forces and

pressures on the body, results:

∫ px1

∞

∂(∇× Ψ)

∂t
dC+

∂φ

∂t
|body − U ·∇φ+

1

2
|∇φ+∇×Ψ|2x1

=
p∞ − px1

ρ
(2.66)

The importance of the unsteady term due to domain vorticity in the compu-

tation of the pressure will be discussed below. Now, note that this unsteady

term is difficult to handle in the form:

∫ px1

∞

∂(∇× Ψ)

∂t
· dC (2.67)

So, by considering the contribution of the vortex wake as an analogous con-

tribution due to a doublet sheet, one can obtain:

∫ px1

∞

∂(∇× Ψ)

∂t
· dC =

∫ px1

∞

∂ϕ

∂t
|wake · dC (2.68)

Integrating the expression for the wake potential ϕ is no more difficult to

handle: ∫ px1

∞

∂ϕ

∂t
|wake · dC =

∂ϕ

∂t
=

∂ϕ

∂t
|body − U · ∇ϕ (2.69)

where, ∇ϕ is the velocity due to the wake. Therefore, the overall unsteady

Bernoulli equation is:

∂ϕ

∂t
|body +

∂φ

∂t
|body − U · ∇(φ + ϕ) +

1

2
|∇φ + ∇× Ψ|2x1

=
p∞ − px1

ρ
(2.70)

2.10 Computation of forces and moments

Once the pressure field has been determined by Bernoulli equation, the

aerodynamic forces and moments on the lifting body can be computed. These

quantities can seem complex but, in all cases, they are due to only two basic

sources over the body surface:

• pressure distribution;
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• shear stress distribution.

It’s well-known that the only way nature has to communicate an aerodynamic

force to a solid body moving through a fluid, is through the pressure and shear

stress distributions which exist on the surface. Pressure and shear stress have

the same dimension (force per unit area) and they vary along the surface.

The first source acts normally to the body surface. The second source acts

tangentially and it is due to the frictional effect of the flow “rubbing” against

the surface as it moves around the body. The shear stress τw is defined as the

force per unit area acting tangentially on the body surface due to friction.

The net effect of the pressure and shear stress distributions integrated over

the complete body surface is a resultant aerodynamic force F and moment M

on the body. Therefore, from the unsteady Bernoulli equation, the resultant

force and moment can be computed as below:

F (t) =

∫

S(t)

(p∞ − ppx′ (t))n dS(t) (2.71)

M(t) =

∫

S(t)

rGp × [(p∞ − ppx′ (t)) n] dS(t) (2.72)

where rGp is the position of the point relative the the local body frame.

The resultant force can be split in two component: lift L and drag D.

The first is defined as the component of F perpendicular to the relative wind.

The second is defined as the component of F parallel to the relative wind.

Consider, now, viscous effects on drag. The presence of friction in a flow

produces two sources of drag:

• skin friction drag Df due to the shear stress at the wall;

• pressure drag due to flow separation Dp, called form drag.

Since the viscosity has been neglected in this work, the total drag cannot be

satisfactory determined. In fact, it is possible to compute only the pressure
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force with inviscid theory. However, there exists a source of drag induced by

lift Di that can be computed in inviscid theory too.

2.10.1 Pressure, force and moment coefficients

In fluid dynamics, it is common to use the pressure coefficient rather

than pressure. The pressure coefficient Cp is a dimensionless pressure and its

usefulness is known in aerodynamics, from subsonic to hypersonic flow. The

pressure coefficient is defined as

Cp =
p − p∞

q∞
=

p − p∞
1
2
ρ∞U2

∞

(2.73)

The pressure coefficient is an important quantity because the distribution of

Cp over the body surface leads directly to the value of the lift coefficient CL

(that will be defined later) and the calculation of the effect of Mach number

M∞ on CL by the Prandtl-Glauert rule.

Similarly, the dimensional lift, drag, and moment coefficients can be de-

fined from dimensional analysis, as

CL =
L

q∞S
(2.74)

CD =
D

q∞S
(2.75)

CM =
M

q∞Sc
(2.76)

where S and c are the lifting body area and chord of reference, respectively.
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Chapter 3

PANEL METHODS

In the previous chapter, the fundamental fluid dynamic equations and

the conditions leading to the simplified ideal flow problem were formulated

and discussed. Now, the emphasis is placed on the theory and the numerical

procedure used to solve regions of the flow field assumed to be inviscid,

incompressible and also irrotational. Therefore, the elementary solutions of

Laplace equation and the basic methodology for obtaining the solutions of

the more complex potential flow problems will be described in this chapter.

3.1 Basic solutions of Laplace equation

Laplace equation over bodies may be solved by the distribution of elemen-

tary solutions whose strengths are obtained by enforcing the impermeability

flow or a fixed normal flow condition on the solid boundaries. But, when the

complexity of the method increases, the calculation becomes more compli-

cate. Therefore, some typical numerical elements upon which some numerical

solutions are based, will be presented in this section. Particularly, attention is

addressed to some three-dimensional constant-strength singularity elements
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[12][33][23].

In the general case, the potential may be integrated over a curve, surface

or volume, in order to generate the corresponding singularity elements. In

these cases, it must not be addressed to strength (like in the case of point

elements), but strength density per unit of length, area or volume, respec-

tively.

Particularly, it is possible to imagine elementary solutions of Laplace

equation that are distributed over plane geometric elements oriented in space:

these elements may be quadrilateral or triangular. Therefore, let σ be the

strength per unit of area for the distributed source, and analogously let µ for

the distributed doublet. The validity of the equations which will be derived

will be related to the plane quadrilaterals, but these may be applied also to

triangular elements which are plane by definition.

Before to describe the three-dimensional constant-strength singularity el-

ements, the free stream solution of Laplace equation will be briefly discussed.

The most simple solution of Laplace equation regards a uniform free

stream. In fact, equation (2.21) is certainly fulfilled by the follow poten-

tial

φ(x, y, z) = u∞x + v∞y + w∞z (3.1)

which represents a uniform flow field

U =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= (u∞, v∞, w∞) (3.2)

3.1.1 Quadrilateral source

Begin to consider a surface element bounded by four straight lines, with a

constant-strength source distribution σ (see figure 3.1). Consider a reference

frame with origin in the quadrilateral center e with z axis directed along the
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normal to the quadrilateral. Thus, the potential in any point P is given by:

φ(x, y, z) = −
σ

4π

∫ ∫

S

dS√
(x − x0)2 + (y − y0)2 + z2

(3.3)

Equation (3.3) may be rewritten by means of the Hess and Smith [30] pro-

z

y
x

(x ,y ,0)1 1

(x ,y ,0)2 2

(x ,y ,0)3 3

(x ,y ,0)4 4

P (x,y,z)

s(x,y)=cost

Figure 3.1: quadrilateral constant-strength source element.

cedure in function of the coordinates of the four quadrilateral vertexes:

φ(x, y, z) = −
σ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)

x̂i ŷij − ŷi x̂ij
dij

ln
ri + rj + dij
ri + rj − dij

+

−|z|
σ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)

[
tan−1

(
mijei−hi

zri

)
−tan−1

(
mijej−hj

zrj

)]
(3.4)

from which the velocity components derives:

u(x, y, z) = σ
4π

∑(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

) ŷij
dij

ln
ri+rj−dij
ri+rj+dij

(3.5)
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v(x, y, z) = σ
4π

∑(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

) −x̂ij
dij

ln
ri+rj−dij
ri+rj+dij

(3.6)

w(x, y, z) = σ
4π

∑(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

) tan−1
(
mijei−hi

zri

)
+

− σ
4π

∑(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

) tan−1
(
mijej−hj

zrj

)
(3.7)

where

x̂i = x − xi i = 1, 2, 3, 4

ŷi = y − yi i = 1, 2, 3, 4

x̂j = x − xj j = 2, 3, 4, 1

ŷj = y − yj j = 2, 3, 4, 1

x̂ij = xj − xi

(
i

j

)
=
(

1, 2, 3, 4

2, 3, 4, 1

)

ŷij = yj − yi

(
i

j

)
=
(

1, 2, 3, 4

2, 3, 4, 1

)
(3.8)

dij =
√

(xj − xi)2 − (yj − yi)2
(
i

j

)
=
(

1, 2, 3, 4

2, 3, 4, 1

)

mij = (yj − yi)/(xj − xi)
(
i

j

)
=
(

1, 2, 3, 4

2, 3, 4, 1

)

ri =
√

(x − xi)2 + (y − yi)2 + z2 i = 1, 2, 3, 4

ei = (x − xi)
2 + z2 i = 1, 2, 3, 4

hi = (x − xi)(y − yi) i = 1, 2, 3, 4

Equations (3.5) and (3.6) show how the velocity components u and v are

defined everywhere except on the quadrilateral boundary. For the compo-

nent w, equation (3.7) shows that two limit cases exist when z = 0: one

discontinuity when the point P lies on the quadrilateral

w(z = ±0) =
±σ

2
(3.9)

and a null value when P is outside of the quadrilateral

w(z = ±0) = 0 (3.10)
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Figure 3.2 is based on the implementation of the equations 3.3, 3.5, 3.6, 3.7

and it shows the flow field induced by a quadrilateral source.

Figure 3.2: quadrilateral source - uniform velocity vector and isopotential contour.

3.1.2 Quadrilateral doublet

Consider a quadrilateral element with a constant-strength doublet distri-

bution which points in the z direction, as showed in figure 3.3. Similar to

the source element, the velocity potential may be obtained by integrating the

point elements:

φ(x, y, z) = −
µ

4π

∫

S

z dS

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.11)
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z
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x

(x ,y ,0)1 1

(x ,y ,0)2 2

(x ,y ,0)3 3

(x ,y ,0)4 4

P (x,y,z)

m(x,y)=cost

Figure 3.3: quadrilateral doublet element.

Following again the Hess and Smith procedure, one may obtain also this

potential in function of the quadrilateral vertex coordinates:

φ(x, y, z) =
µ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)
tan−1

(
mijei − hi

zri

)
+

−
µ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)
tan−1

(
mijej − hj

zrj

)
(3.12)

and the corresponding velocity components:

u(x, y, z) =
µ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)

−zŷij(ri + rj)

rirj {rirj − [x̂ix̂j + ŷiŷj + z2]}
(3.13)
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v(x, y, z) =
µ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)

zx̂ij(ri + rj)

rirj {rirj − [x̂ix̂j + ŷiŷj + z2]}
(3.14)

w(x, y, z) =
µ

4π

∑
(
i

j

)
=

(
1, 2, 3, 4

2, 3, 4, 1

)

[x̂j ŷi − x̂iŷj](ri + rj)

rirj {rirj − [x̂ix̂j + ŷiŷj + z2]}
(3.15)

Figure 3.4: quadrilateral doublet - uniform velocity vector and isopotential con-
tour.

Observe that the doublet potential may be developed from the source

way because

φdoublet = −
∂

∂n
φsource (3.16)
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As the source element, equation (3.12) shows that there exists a discontinuity

when z = 0:

φ(z = ±0) =
±µ

2
(3.17)

Similar to the previous case, the potential and velocity fields illustrated in

figure 3.4 are based on the implementation of the obtained equations.

3.1.3 Constant doublet panel equivalence to vortex ring

Continue to consider the quadrilateral doublet with constant strength µ

with its potential which may be written as

φ = −
µ

4π

∫

S

z

r3
dS (3.18)

where r =
√

(x − x0)2 + (y − y0)2 + z2.

The velocity is

U = ∇φ = −
µ

4π

∫

S

∇
z

r3
dS =

=
µ

4π

∫

S

[
i

∂

∂x0

z

r3
+ j

∂

∂y0

z

r3
+ k

(
1

r3
−

3z

r5

)]
dS (3.19)

where

∂

∂x

1

r3
= −

∂

∂x0

1

r3
(3.20)

∂

∂y

1

r3
= −

∂

∂y0

1

r3
(3.21)

Now, consider a vortex filament of circulation Γ along the curve bounding

the quadrilateral, labeled as C (figure 3.5). Clearly, the velocity field induced

by this filament is given by the Biot-Savart law (see chapter 1) as

U =
Γ

4π

∫

C

dℓ × r

|r|3
(3.22)
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Thus, for dℓ = (dx0, dy0) and r = (x − x0, y − y0, z), the velocity results

expressed as following

U =

∫

C

{
i
z

r3
dy0 − j

z

r3
dx0 + k [(y − y0)dx0 − (x − x0)dy0]

}
(3.23)

At this point, recall Stokes theorem for a vector A

∫

C

A · dℓ =

∫

S

n · ∇ × AdS (3.24)

With n = k above equation becomes

∫

C

A · dℓ =

∫

S

(
∂Ay

∂x0

−
∂Ax

∂y0

)
dS (3.25)

Applying Stokes theorem on the above velocity integral, one gets

U =
Γ

4π

∫

S

[
i

∂

∂x0

z

r3
+ j

∂

∂y0

z

r3
− k

(
∂

∂x0

x − x0

r3
+

∂

∂y0

y − y0

r3

)]
dS (3.26)

Therefore, if Γ = µ the velocity field induced by the vortex ring is identical

to the velocity of the doublet quadrilateral (see also figure 3.4).
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z
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(x,y)= (x,y)

<=>

Figure 3.5: quadrilateral doublet element and its vortex ring equivalent.
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Figure 3.6: the fluid domain considered in the derivation of the Green’s Theorem
BIE.

3.2 Panel method formulation

For most engineering applications the problem requires a solution in a

fluid domain. Usually this domain contains a solid body with additional

boundaries that may define an outer flow boundary.

Consider the scalar potential governed by Laplace’s equation:

∇2φ = 0. (3.27)

The mathematical problem defined by Laplace’s equation with the boundary

conditions is described schematically by figure 3.6. Laplace’s equation must

be solved for an arbitrary body with boundary SB enclosed in a volume V ,

with the outer boundary S∞ (with the normal defined so that it always points

outside the region of interest V ) [12][33][23][40][29].

Inside the domain V the general solution of Laplace’s equation is possible

to obtain by means of the Green’s Identity that follows from the divergence
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theorem that is
∫ ∫

S

Q · ndS =

∫ ∫ ∫

V

∇ · QdV (3.28)

Particularly, consider the vector

Q = φ1∇φ2 − φ2∇φ1 (3.29)

where φ1 and φ2 are two scalar functions of position. Applying the divergence

theorem to the vector Q, results:

∫ ∫

S

(φ1∇φ2−φ2∇φ1)·ndS =

∫ ∫ ∫

V

(
φ1∇

2φ2−φ2∇
2φ1

)
dV (3.30)

This equation is the second of Green’s Identities where the surface integral is

taken over all the boundaries S, including a wake sheet model SW (necessary

to impose the Kutta condition) and the outer boundary S∞:

S = SB + SW + S∞ (3.31)

Let one set

φ1 =
1

r
(3.32)

and

φ2 = φ (3.33)

where φ is the potential of the flow in V , and r is the distance from a point

P (x, y, z) is another potential that satisfies Laplace’s equation.

This way the second Green’s Identity results:
∫ ∫

S

(
1

r
∇φ − φ∇

1

r

)
· ndS =

∫ ∫ ∫

V

(
1

r
∇2φ − φ∇2 1

r

)
dV (3.34)

When the point P is outside of V , equation (3.34) becomes

P /∈ V =⇒

∫ ∫

S

(
1

r
∇φ − φ∇

1

r

)
· ndS = 0 (3.35)
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In the particular case where the point P is inside the region, the point P must

be excluded from the region of integration and it is surrounded by a small

sphere of radius ǫ. In the remaining region V outside of the sphere ǫ both φ1

and φ2 satisfy Laplace’s equation. Therefore, equation (3.34) becomes

P ∈ V =⇒

∫ ∫

S+Sǫ

(
1

r
∇φ − φ∇

1

r

)
· ndS = 0 (3.36)

Now introduce a spherical coordinate system at P to obtain the integral over

the sphere. Since the vector n points inside the small sphere, equation (3.36)

becomes
∫ ∫

S

(
1

r
∇φ − φ∇

1

r

)
· ndS −

∫ ∫

Sǫ

(
1

r

∂φ

∂r
+

φ

r2

)
dS = 0 (3.37)

The integration over the surface of the spherical exclusion region reduces to:

∫ ∫

Sǫ

(
φ

r2

)
dS = 4πφ(P ) (3.38)

Finally, equation (3.37) becomes

φ(P ) =
1

4π

∫ ∫

S

(
1

r
∇φ − φ∇

1

r

)
· ndS (3.39)

Equation (3.39) is the third Green’s Identity that gives the value of the φ(P )

at any point in the flow, within the region V , in terms of the values of the φ

and ∂φ/∂n on the boundaries S.

When the flow of interest occurs inside the boundary of the SB and hence

the resulting internal potential is φi, the point P inside the region V is outside

of SB and applying equation (3.35), results

0 =
1

4π

∫ ∫

SB

(
1

r
∇φi − φi∇

1

r

)
· ndS (3.40)

where n points out from SB.
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By adding equations (3.39) and (3.40), we obtain the formula that in-

cludes the influence of the inner potential:

φ(P ) =
1

4π

∫ ∫

SB

[
1

r
∇(φ − φi) − (φ − φi)∇

1

r

]
· ndS+

+
1

4π

∫ ∫

SW+S∞

(
1

r
∇φ − φ∇

1

r

)
· ndS (3.41)

Regarding the contribution of the S∞ integral in equation (3.41), this can be

defined as

φ∞(P ) =
1

4π

∫ ∫

S∞

(
1

r
∇φ − φ∇

1

r

)
· ndS (3.42)

This contribution depends on the reference frame: for example, this potential

can be selected as a constant in the region in an inertial system where the

body moves through an otherwise stationary fluid. Furthermore, since the

wake surface is assumed to be thin, ∂φ/∂n is continuous across it. By means

of these assumptions, equation (3.41) becomes

φ(P )=φ∞(P )+
1

4π

∫ ∫

SB

[
1

r
∇(φ−φi)−(φ−φi)∇

1

r

]
· ndS+

−
1

4π

∫ ∫

SW

(φU − φL)n · ∇
1

r
dS (3.43)

This formula provides the value of φ(P ) in terms of φ and ∂φ/∂n on the

boundaries. One can observe that the flow problem reduces to determining

the value of φ and ∂φ/∂n on the boundaries.

When the point P lies on the boundary SB, the potential φ(P ) becomes

singular. Therefore, in order to exclude the point from V , the integration

is carried out only around the surrounding hemisphere. Equation (3.43)
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becomes

φ(P ∈ Sb) = φ∞(P ) +
1

4π

∫ ∫

SB

1

r
n · ∇(φ − φi)dS+

−
1

4π

∫ ∫

SB−P

(φ − φi)n · ∇
1

r
dS ±

1

2
(φ − φi)p+

−
1

4π

∫ ∫

SW

(φU − φL)n · ∇
1

r
dS (3.44)

where the factor 1/2 is due to the use of the hemisphere instead of the sphere,

and the sign is due to the direction of n.

The solution of the above relationship let us evaluate the potential in

any point P that lies on the boundary SB, in terms of φ and ∂φ/∂n on the

boundaries.

3.2.1 Boundary conditions

The solution of equation (3.44) must satisfy a number of known boundary

conditions which can be imposed on the solid surfaces and the fluctuating

wake. Particularly, the Neumann condition must be satisfied on the surface

SB so:

n · ∇φ = −UnT − UnR (3.45)

where UnR is the resultant normal component of velocity relative to the sur-

face due to the motion of the body, and UnT is the normal component of the

velocity due to possible flows of transpiration through the surface, therefore

this term is zero for the case of a solid boundary with no transpiration.

Instead, no condition in terms of potential results a necessity on the

surface SW , because it itself represents the imposition of the wing trailing

47



PANEL METHODS

edge Kutta condition. The rise in potential lies must assure that the velocity

does not rotate round the trailing edge. This way the presence of the wake

does not introduce additional unknowns to the problem, because the rise

in potential on the wake is associated to the unknown potentials near the

trailing edge and the contribution of the SW integral must be considered as

a known term.

However, a constraint exists for the wake, due to the wake form. This

form must be determined considering that the wake cannot support a load,

because the wake is not a solid surface. Therefore, the wake form must be

aligned with the local flow direction, which means to establish a condition of

tangency of the velocity in every point:

U · n|SW = 0 (3.46)

Note that it is necessary to know the flow field U but the goal of the analysis

is U . This non-linarity can be overpassed to approach the wake with a fixed

form, independent of the flow field, or with the support of solution iterative

techniques.

3.2.2 Singularity model

A given flow field can be obtained from an infinite number of configura-

tions of distributions of singularities (sources and doublets) on the problem

boundaries (SB, SW ), each combination producing a different flow in the

inside region.

A unique combination of singularities can be obtained with different sin-

gularity models. Particularly, one way that can be considered is to specify

one of the singularity distributions and to solve for other using boundary

conditions only on the side of the boundary. Another way is to apply certain
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constraining relationships on the singularity distributions.

One important characteristic for certain of the singularity models from

the numerical point of view, is that the flow field generated in the inner

region by the model is related to the boundary [40]. Particularly, the jump

from the internal flow to the external flow should be a small passing through

the boundary. Therefore, a minimum perturbation from the singularities is

required. To satisfy this requisite one can treat the internal flow directly

in equation (3.44), obtaining a unique singularity distribution by specifying

boundary conditions on both sides of the surface. In this case, the inner

velocity potential φi is specified directly in equation (3.44): this is an internal

Dirichlet boundary condition. Particularly, consider the internal flow equal

to outset flow φi = φ∞. This way, equation (3.44) becomes:

0 =
1

4π

∫ ∫

SB

1

r
n · ∇(φ − φ∞)dS+

−
1

4π

∫ ∫

SB−P

(φ − φ∞)n · ∇
1

r
dS +

1

2
(φ − φ∞)p+

−
1

4π

∫ ∫

SW

(φU − φL)n · ∇
1

r
dS (3.47)

where the perturbation potential on the exterior surface φ − φ∞, is now the

doublet density

4πµ = φ − φ∞ (3.48)

whereas the source distribution is

4πσ = −n · (∇φ −∇φ∞) = −Un + Un∞
(3.49)

Note that the source distribution is therefore established at the outset.
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At this point, equation (3.47) becomes
∫ ∫

SB

σ

r
dS −

∫ ∫

SB−P

µn · ∇
1

r
dS + 2πµp −

∫ ∫

SW

µwn · ∇
1

r
dS = 0 (3.50)

where µw = (φU − φL)/4π is the known wake doublet density at the trailing

edge.

Moreover, note that sources and doublets have a physical sense. The

thickness effects can be simulated by means of the doublets, the non sym-

metrical conditions by means of the sources.

Equation (3.49) shows that the Neumann condition can be satisfied only

by the sources and the sources are known too.

So far thick configurations having a distinct internal volume enclosed

by the surface S have been concerned. When the configurations having a

indistinct internal volume (parts of the configuration are extremely thin),

then these configurations can be represented by open surfaces. In this case,

equation (3.43) becomes

φ(P ) = φ∞(P ) +
1

4π

∫ ∫

SB

(
1

r
∇(φU−φL)−(φU−φL)∇

1

r

)
·ndS+

−
1

4π

∫ ∫

SW

µwn · ∇
1

r
dS (3.51)

If the normal velocity is continuous through the sheet then the term n ·

(∇φU −∇φL) = 0, disappearing the source term and the above relationship

becomes:

φ(P ) = φ∞(P ) −

∫ ∫

SB

µn · ∇
1

r
dS −

∫ ∫

SW

µwn · ∇
1

r
dS (3.52)

where µ = (φU − φL)/4π is the jump in total potential across the sheet.

Applying the external Neumann boundary condition, then

n · ∇φ(P ) = n · ∇φ∞(P ) −

∫ ∫

SB

µn · ∇

(
n · ∇

1

r

)
dS+
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−

∫ ∫

SW

µwn · ∇

(
n · ∇

1

r

)
dS (3.53)

where n · ∇φ(P ) = 0 in case of no transpiration.

Equations (3.50) and (3.53) are the basic equations for the solution of the

flow problem. These equation can be written so:

φ(P ) = φ∞(P ) + φ′(P ) (3.54)

n · ∇φ(P ) = n · ∇φ∞(P ) + n · ∇φ′(P ) (3.55)

where φ′ represents the potential of perturbation.

By means of the resolution of these equations the unknown singularity

distributions may be obtained on the body surface and that content to com-

pute the flow field by means of the derivation of the potential.

3.2.3 Computation of velocities and forces

Once the singularity distribution strengths are known, the total velocity

in every point of the domain is possible to compute by means of the following

equation

U(P ) = U
∞

(P ) −

∫ ∫

SB

µ∇

(
n · ∇

1

r

)
dS+

+

∫ ∫

SB

σ∇
1

r
dS −

∫ ∫

SW

µw∇

(
n · ∇

1

r

)
dS (3.56)

The above relationship is the basic for many numerical solutions and has

been obtained by taking the gradient of total scalar potential of equation

(3.43).
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n

t2

t1
Vt1

Vt2

Vn

Figure 3.7: panel local reference frame for evaluating the normal and tangential
velocity components.

Instead, when the point P lies on the boundary, it is necessary to consider

equation (3.44) and to use following equation

U(P ∈ body) = U
∞

(P ) − 2

∫ ∫

SB−P

µ∇

(
n · ∇

1

r

)
dS+

+2

∫ ∫

SB

σ∇
1

r
dS − 2

∫ ∫

SW

µw∇

(
n · ∇

1

r

)
dS (3.57)

However, as the particular choice of the source values, it is possible to com-

pute the velocity by taking the gradient of the potential in a local reference

frame centered in the point of interest, how showed in figure 3.7.

In fact, as the normal component of velocity disturbance has been es-

tablished, one may compute the tangential components of the same velocity

disturbance by means of the derivatives of the doublet intensity along two

direction tangential to the body:

u(P ) = ut1it1 + ut2it2 + unin =
∂µ

∂t1
it1 +

∂µ

∂t2
it2 − σin (3.58)

In the case of a Neumann boundary condition, above equation becomes:

u(P ) = ±
∂µ/2

∂t1
it1 ±

∂µ/2

∂t2
it2 − U

∞
· in (3.59)
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where the signs +/− represent the upper and lower sides, respectively. These

components will be summed at the no-disturbed local velocity in order to

obtain the total velocity:

U(P ∈ body) = U
∞

(P ) + u(P ) (3.60)

After the distributions of velocity and ∂φ/∂t have been computed on the

bodies, by means of Bernoulli theorem, one may obtain the corresponding

distributions of pressure to integrate in order to compute forces and mo-

ments.

3.3 Panel method numerical procedure

In the above section, the solution to the potential flow problem has

been obtained analytically, only after some geometrical simplifications in the

boundary conditions have been made.

In most of the cases, the numerical application is characterized by the

treatment of more realistic geometries and the fulfillment of the boundary

conditions on the corresponding surface. In this section, the numerical pro-

cedure will be examined.

The numerical method to solve the potential flow problem is based on the

surface distribution of singularity elements, as the solution has been reduced

to finding the strength of these elements.

From the numerical point of view, a solution can be obtained if the body

and wake geometries are discretized separately from singularity distribution

[29]. In most of applications, the body and wake surfaces are represented

by a large number of small quadrilateral and/or triangular regions which are

planar in most methods. These small quadrilateral regions are called panels

defined by functions of the kind z = f(x, y) in a local reference frame (see
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control point
grid point

control point
grid point

Figure 3.8: examples of discretized (thick and thin) body and wake geometries.

figure 3.8); therefore this type of method is called panel method. Thus, as

the body is divided into N surface panels, so the wake is represented by Nw

wake panels. Every single panel is characterized by means of its grid points.

By means of the discretization process, panels are defined by polynomi-

als on which the order of desired accuracy to represent the real geometry

depends. This accuracy rises with the polynomial order.

The singularity distribution must be subdivided into panels which are co-

inciding with the body panels where the singularity strength may be assumed

constant (low-order), linearly variable (first order) or parabolic (second or-

der). Generally, the order of accuracy used for the singularity distribution

is equal to the order of the body discretization, since the schematization

accuracy of lower order should be, however, decisive.
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For the singularities, the simplest discretization is the constant strength

over quadrilateral panel, defined by plane surfaces and rectilinear borders.

This way to discretize permits to have notable simplicity of calculus and of

numerical implementation but requires a great number of panels in order to

compensate the accuracy loss due to low polynomial order. However, this

choice results the most used technique of panels methods.

Once the body and wake surfaces have been discretized, the control point

in which the boundary condition must be imposed results automatically in-

dividuated into the centroid of each panel. For thick bodies, the condition

of zero normal flow or assigned normal flow across the body surfaces may be

defined by using Dirichlet formulation (3.50). For thin bodies, this condition

may be defined by using Neumann formulation (3.53), as seen in previous

section. Thus, equations (3.50) and (3.53) may be rewritten in each control

point of NB panels (of which Nd
B of Dirichlet type and Nn

B of Neumann type)

present on the surfaces. Particularly, let J , rJ and Nw be the panel in which

the boundary condition is imposed on the control point (see figure 3.9), the

distance respect to the panel of which the effect is computed and the wake

panel number, respectively, results

NB∑

K=1

∫ ∫

panel K

µK n · ∇
1

rJ
dS +

NW∑

L=1

∫ ∫

panel L

µwL n · ∇
1

rJ
dS =

=

NB∑

K=1

∫ ∫

panel K

σK
1

rJ
dS (J =1, ...,Nd

B) (3.61)

NB∑

K=1

nJ ·

∫ ∫

panel K

µK∇

(
n·∇

1

rJ

)
dS+

NW∑

L=1

nJ ·

∫ ∫

panel L

µwL∇

(
n·∇

1

rJ

)
dS =

=

NB∑

K=1

nJ ·

∫ ∫

panel K

σK∇
1

rJ
dS−nJ ·(U−U

∞
) (J =1, ...,Nn

B) (3.62)
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Figure 3.9: schematization for the influence coefficients.

The integrals in the above equations are over the single panel surface, and

each one represents the influence that the generic panel K or L produces on

the control point of the panel J . Moreover, these integrals may be substituted

by summations extended to the corresponding grid points. For the elements

with constant or unitary singularity strength, this influence is due only to

the panel geometry and it may be synthesized using some coefficients, called

influence coefficients:

Bd
JK =

∫ ∫

panel K

1

rJ
dS (3.63)

Bn
JK = nJ · U

σ
JK ; Uσ

JK

∫ ∫

panel K

∇
1

rJ
dS (3.64)

Cd
JK =

∫ ∫

panel K

∇
1

rJ
dS ; Cd

JJ = −2π (3.65)

Cn
JK = nJ · U

µ
JK ; Uµ

JK

∫ ∫

panel K

∇

(
n ·

1

rJ

)
dS (3.66)

where the apexes d and n are always indicative of the imposed condition

type.

56



PANEL METHODS

By using the influence coefficients, equations (3.61) and (3.62) become

NB∑

K=1

Cd
JKµK +

NW∑

K=1

Cd
JKµwL =

NB∑

K=1

Bd
JKσK

(J = 1, ..., Nd
B) (3.67)

NB∑

K=1

Cn
JKµK+

NW∑

K=1

Cn
JKµ

w
L =

NB∑

K=1

Bn
JKσK −nJ ·(U−U

∞
)J

(J = 1, ..., Nn
B) (3.68)

When the source strengths related to the condition of zero normal flow across

the body surfaces (equation (3.49)) are assigned for thick bodies or fixed

equal to zero for thin body, it is possible compute the influence coefficients

Bd
JK e Bn

JK , letting unknown only the doublet terms. Moreover, the Kutta

condition permits to rewrite also the wake doublets µwL in function of the

body doublets µK . In fact, for thick body, every single wake panel will have

one side coinciding with the trailing edge of the body on which two panels

(one upper panel, one lower panel) of the same body converge.

Let µuL, µlL, µwL be the doublet strength of the upper panel, the doublet

strength of the lower panel, and the doublet strength of the near wake panel

(see figure 3.10), by the Kutta condition results

µwL = µuL − µlL (3.69)

As for the bodies without thickness (figure 3.10), there is not difference

between upper and lower, therefore

µwL = µlL (3.70)

Thus, the influence of any panel wake becomes:

Cd
JKµwL = Cd

JK(µuL − µlL) (3.71)

Cn
JKµwL = Cn

JKµlL (3.72)
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Figure 3.10: reference frame for the Kutta condition.

Equations (3.71) and (3.72) consent to trace the doublet influence of the

doublets on the wake panels back to the corresponding doublets near the

trailing edge, correcting simply the influence coefficients Cd
JK and Cn

JK , thus

Ad
JK = Cd

JK panel K not at the trailing edge (3.73)

Ad
JK = Cd

JK − Cd
JL panel K at the upper trailing edge (3.74)

Ad
JK = Cd

JK + Cd
JL panel K at the lower trailing edge (3.75)

An
JK = Cn

JK panel K not at the trailing edge (3.76)

An
JK = Cn

JK + Cn
JL panel K at the trailing edge (3.77)

Finally, one obtains:

NB∑

K=1

Ad
JKµk=

NB∑

K=1

Bd
JKσK (J = 1, ..., Nd

B) (3.78)
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NB∑

K=1

An
JKµk=

NB∑

K=1

Bn
JKσK−nJ ·(U−U

∞
)J (J = 1, ..., Nn

B) (3.79)

Another condition of the wake form must be added to equations (3.78) and

(3.79). This is a no-linear problem since this condition corresponds to the

imposition of a variation of the wake form which fluctuates freely in the

domain [13]. In the case of flexible wake, this condition may be imposed

by annulling the normal velocity components in the control points of every

single wake panel:

U · nL = 0 (L = 1, ..., NW ) (3.80)

Equations (3.78) and (3.79) for the NB control point drive to a set of NB

linear algebraic equations in the NB strength unknown of surface doublets

µK .

The numerical solution of this set is generally stable, because the un-

known doublet distribution is quite little, since it is due to only perturbation

potential.

3.3.1 Unsteady panel methods

The method of solution of incompressible, irrotational flow that is devel-

oped so far does not include the unsteady nature of the problem. Therefore,

it will be shown that this method may include time-dependency that will

be introduced through the boundary conditions and the use of the unsteady

Bernoulli equation.

The choice of the coordinate systems is very important for the formula-

tion of the unsteady problem. In order to prescribe correctly the boundary

conditions on the solid body surfaces, consider a body-fixed coordinate sys-

tem (0, x, y, z) and a fixed-in-space global reference frame (0, X, Y, Z) which
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Figure 3.11: inertial frame and body frame used to describe the motion of the
body.

is assumed to be known, as illustrated in figure 3.11. Suppose the body

motion law is known, the zero normal flow boundary condition becomes:

∂φ

∂n
= (U

∞
− U r − Ω × r) · n (3.81)

where r = r(x, y, z), U
∞

, U r and Ω are the position of any point in the body

reference frame, the velocity of the body frame origin in global coordinates,

the relative motion of the surface due to deformation of the body, the angular

velocity, respectively.

3.3.2 Unsteady panel wake model

Regarding the wake, the solution is based on a time-stepping technique:

the wake is formed in the inertial coordinate system as the body from which

the wake separates moves away from its initial position, shedding from known

separation lines on the surface body (trailing edges of wings, for example).
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During every single time step, the wing moves along its flight path and every

trailing edge vortex panel sheds a wake panel with a strength (related to the

Kutta condition) corresponding to its circulation in the previous time step.

It is as if the trailing edge leaves its ”tracks” during its pass or, if the body

is motionless and surrounded by the stream, the trailing edge is trailed by

the flow [12] (see figure 3.12). So a new row of wake panels is added to the

wake at the separation line and all the preexisting rows of wake panels are

convected downstream with the local velocity field in the inertial reference

frame at each time step [7][8][6][11].

In detail, at the beginning of the motion no wake panels exist but only

the wing bound vortex panels exist where the closing segment of the trailing

edge vortex elements represents the starting vortex or separation line.

During the second time step, the wing is moved along its flight path and

each trailing edge vortex panel sheds a wake panel. This first wake sheet,

used to account for the vorticity recently shed into the domain from the wing

trailing edge, imposes a well defined potential jump at the trailing edge to

satisfy the Kutta condition: this condition is used as a boundary condition

to determine the strength of the doublets to be shed into the first row of

a wake. Therefore, every single wake panel has a vortex strength equal to

the circulation obtained by fulfilling the Kutta condition at the trailing edge.

Once the trailing edge vortexes are given, the buffer wake sheet is determined

automatically.

During the third time step, two rows of wake panel exist: new fist row of

wake panels closest to the trailing edge where the Kutta condition must be

imposed is shed by previous time-step trailing edge vortex panel, second row

is known since corresponds to the convected previous time-step wake panel

row where the Kutta condition was resolved. Therefore, at the rising of time
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rigid wake

flexible wake

Figure 3.12: examples of generation of rigid and flexible unsteady wake.

the rows successive to the wake panel row, closest to the trailing edge are

known.

This time stepping methodology may be continued at every single time

step in which vortex wake is moved by the local velocity. Thus, unsteady

phenomenon like wake rollup may be simulated.

At this point, it is clear that in order to model the wake the following steps

are taken: define the wake separation line which coincides with the trailing

edge and is treated as the first section of the wake; identify which patch a

62



PANEL METHODS

wake separates from, the side of the patch which is parallel to the separation

line and the row of panels within the patch that the wake separates from.

As described by Katz and Plotkin [64], this row of wake panels have a length

dimension in the streamwise direction corresponding to

cw |U∞| · t

where the value of cw is typically chosen to be 0.2 ÷ 0.3. In the present

implementation, a value of 0.25 was found to be adequate. This reduced

value of cw is a result of the use of vortex rings to model the wake vorticity

rather than higher order vorticity distributions.

In this sense, from a numerical point of view, observe the importance

of the distance and relative angle to the trailing edge. In fact, the wake

vortex location should be aligned with the wing trailing edge and be placed

closer to the latest position of the trailing edge. Therefore, the doublet when

placed in the time interval introduces an approximation that underestimates

the induced velocity when compared to the continuous wake vortex sheet

result. This is so, since the distance of the continuous wake from the trailing

edge during the time interval is a zero distance whereas the distance of an

equivalent panel placed in the time interval is not zero. Therefore, to correct

this wake discretization error it is necessary to place the wake panel with a

value of length dimension in the streamwise direction chosen to be 0.2÷ 0.3.

Instead, for the successive rows of wake panels, the value of cw is chosen to

be 1: the length in the streamwise direction of |U∞| · t.

Let Nts be the time step in which one wishes to compute the solution

and MW the number of wake panels generated at each time step. Equations

(3.78) and (3.79) are corrected in this way:

NB∑

K=1

Ad
JKµK =

NB∑

K=1

Bd
JKσK−

Nts−1∑

I=1

MW∑

L=1

Cd
JILµ

w
IL
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(J = 1, ..., Nd
B) (3.82)

NB∑

K=1

An
JKµK =

NB∑

K=1

Bn
JKσK−

Nts−1∑

I=1

MW∑

L=1

Cn
JILµ

w
IL−nJ ·(U−U

∞
)J

(J = 1, ..., Nn
B) (3.83)

Figure 3.13: references for the indices of the wake panels.

Clearly, equations (3.82) and (3.83) are valid for any choice of Nts, sup-

posing the solution is computed in all below Nts− 1 time steps; particularly,

equations (3.82) and (3.83) are equal to equations (3.78) and (3.79) when

Nts = 1, respectively (figure 3.13).

The wake can be rigid, flexible or a combination of the two. If the wake is

flexible, it is deformed at each time step by the local velocity induced by the

presence of all the bodies and wakes being modeled therefore it is necessary

to compute the velocity field into the grid points and/or control points of the

wake panels and to deform these panels so that equation equations (3.80) are

fulfilled correctly. In the case of rigid wake, the problem is linearized by the
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fact that the wake is imposed and thus the flow field can not influence the

wake.

So far the wake modelling is only characterized by using of common wake

panels. In the next chapter, it will be possible to see how the wake may be

modeled by means of three dimensional singularity point vortex which will

be really generated by the panels wake.

3.3.3 Computation of velocities and forces

For the computation of the total velocity in any point P outside the body,

rewrite equation (3.56) in discrete term:

U(P )=U
∞

(P )−

NB∑

K=1

Uµ
KµK−

NB∑

K=1

Uµ
KµwL+

NB∑

K=1

Uσ
KσK (3.84)

where the coefficients

Uσ
K =

∫ ∫

panel K

∇
1

r
dS ; Uµ

K =

∫ ∫

panel K

∇

(
n · ∇

1

r

)
dS (3.85)

have the same physical significance of the corresponding coefficients of equa-

tion (3.65) and (3.66).

In the same way, one can start by equation (3.57) for velocity calculation

in every single point lying on the body surfaces, particularly in the grid

points and control points. However, for the points lying on the surfaces, it

is most advantageous to use equation (3.58) which, for the computation of

the tangential components of velocity perturbation, may be applied to an

explicative scheme, as follow:

ut1 =
µ(J3) − µ(J1)

d1 + d3

; ut2 =
µ(J4) − µ(J2)

d2 + d4

(3.86)

In the case of a Neumann boundary condition (see equation 3.59), the tan-
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J1
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J4
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d
1

d3

d
2

d4

Figure 3.14: schematization of the computation of the velocity perturbation com-
ponents.

gential component of velocity perturbation becomes:

ut1 = ±
(µ(J3) − µ(J1))/2

d1 + d3

; ut2 = ±
(µ(J4) − µ(J2))/2

d2 + d4

(3.87)

In reality, the panel distribution results difficultly so regular as illustrated

in figure 3.14, therefore, in order to apply equation (3.58) it is necessary to

use a more complex computational technique how, for example, building a

function of doublet strength distribution on the basis of a large number of

control point into the round of the interest point:

µ̂ = f(ξi, ηi, ζi, µi) (i = 1, ..., n) (3.88)

with the purpose to compute the derivatives.

After the velocity computation over the surfaces, it is possible to compute

the corresponding distribution of pressure or, alternatively, of the pressure

coefficient:

p = p∞ +
1

2
ρ∞(U2

∞
− U2) − ρ∞

µ(t) − µ(t − ∆t)

∆t
(3.89)

Cp = 1 −
U2

U2
∞

+
µ(t) − µ(t − ∆t)

∆t

2

U2
∞

(3.90)
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thus, the force acting on every body:

NB∑

J=1

pJnSJ = F (3.91)
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Chapter 4

THE VORTON METHOD

FOR WAKE

The wake problem was analyzed by several authors. In particular way,

Helmholtz analyzed the problem of two-dimensional body submerged in a

flow field with the presence of a wake (called Helmholtz wake) behind the

body whereas Von-Kármán studied the formation of vortices (called Kármán

vortices) from a cylinder [50]. The goal of this chapter is to present and

analyze a new vortex method as a tool for the direct numerical simulation

of unsteady, inviscid and incompressible flows and, particularly, of vorticity

localized on the thin wake regions. This new method is the vorton method,

also called vortex particle method.

The wake is a vorticity region which may be discretized in several ways. In

panel methods, as shown in chapter 2, the wake is discretized into panels. In

the present method, the wake will be discretized into vortons. The classical

wake panels will be transformed into vortons in several ways which will be

analyzed herein in order to choose one that consents to solve the flow filed

without lose of accuracy in comparison to panel methods.

68



THE VORTON METHOD FOR WAKE

4.1 The vorton method

To present this technique, consider a vorticity region and let V be the

volume of this region. Since vortex methods are based on the discretization

of the vorticity domain, consider a generic uniform grid taken as a set of

cubes of volume h3. A vorton, also called vortex particle, is simply a three-

dimensional point vortex αp equal to the vorticity multiplied by h3, according

to Cottet and Koumoutsakos [21]. This vortex element may be expressed as

αp(x, y, z, t) = αxp(t)i + αyp(t)j + αzp(t)k (4.1)

where αxp(t), αyp(t) and αxp(t) represent the scalar component of αp, at a

given time, along the x, y and z directions, respectively. In figure 4.1, the

equivalence between a vorton and a simple vorticity region of vorticity (vortex

tube with constant section area) is represented. Clearly, a vortex tube may

be also discretized into so many vortons: as described by Winckelmans and

Leonard [65], a vorton may be thought of a small section of a vortex tube.

The vector potential for this element is a solution of Poisson’s equation

∇2Ψ = −ω. The solution of Poisson’s equation is given by equation (A.9)

which is an integral over the volume of vorticity. According to Strickland et

al. [57][56], the vector potential is so given by

Ψp(r, t) =
αp(r, t)

4π|r|
(4.2)

where r is the distance from the vorton to the point of evaluation. Observe

that above equation is singular for r = 0. This singularity may lead to very

large value when |r| approaches zero, therefore a core-function ξψ is necessary

to regularize the vector potential. Let σ and rσ be the core-radius associated

with the vorton and the ratio between the absolute distance of the evaluation

point and the core-radius (rσ = |r|/σ). The core-function ξψ is so that, when

rσ < 1, the vector potential decays linearly to zero.
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Figure 4.1: vortex tube and its corresponding vorton.

The velocity field induced by a single vorton is given by the curl of the

vector potential:

UΨp(r, t) = ∇× Ψp(r, t) (4.3)

Therefore, a vorton is a singularity element with the velocity magnitude that

decays as 1/r2, see figure 4.2. Since Ψp is a solution of Poisson’s equation, the

velocity field due to the single vorton is rotational and solenoidal everywhere.

As for the vector potential, the velocity results singular for r = 0. Similarly

to the vector potential, a core-function ξU is introduced so that the vector

potential decays linearly to zero when rσ < 1, how illustrated in figure 4.2.

Note that a vorton results different from a two-dimensional vortex point.

In fact, a 2D vortex is a solution of the Laplace’s equation ∇2φ = 0, where

U = ∇φ is irrotational by definition. Therefore, it is a singularity element
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Figure 4.2: flow field induced by a vorton.

with only a tangential velocity component whose magnitude decays as 1/r,

being ∇φ = −Γ/(2πr) as illustrated in figure 4.3.

Moreover, the vorton evolution is governed by the vorticity evolution

equation (2.52), therefore every single vorton is convected by the local veloc-

ity and strained by the local velocity gradient (stretching term in the vorticity

evolution equation).

In order to approximate the exact initial vorticity field as accurately as

possible, now the way to initialize the vortons will be described. For this

purpose, begin by consider the vorticity region of interest that is the thin

wake trailing the body surfaces. As shown in the previous chapter, this may

be equivalently represented using equivalent doublet sheets and vortex rings.
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Figure 4.3: flow field induced by a two-dimensional vortex.

Thus, see how convert the wake commonly represented using vortex rings or

equivalent doublet panels in the vortons that is how to assign the strength

to the vorton so that the vorticity region represented by a vorton results

equivalent to vorticity region represented by a common panel. According to

Willis [63], the following steps are taken:

1. determine the equivalent vortex representation for every single doublet

panel to be converted to vortons;

2. fix the number of vortons to be generated from every single panel;

3. divide the panel into equal area segments.

Therefore, the vorton is computed by integrating the strength of the vortex
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line surrounding the panel area segment

αp(r, t) =

∫
Γ(t)ds (4.4)

In the vorton method, the vorticity is replaced by a set of vortons and there-

fore the vorticity field is approximated as the linear combination of the vor-

ticities represented by the vortons, as follows

ω(r, t) =
∑

P

αp(r, t) (4.5)

as shown by Winckelmans and Leonard [65], Willis et al. [63][64], Lebental

[34], Alkemade et al [3], Voutsinas et al. [62], Chatelain et al. [18], Aksman

and Novikov and Orszag [2], Park and Kim [48], Eldredge [26], Chatelain and

Leonard [19], Voutsinas et al. [47], Spalart [53], Cottet and Koumoutsakos

[21].

The velocity field UΨ(r, t) is taken as the curl of the streamfunction which

solves the Poisson’s equation

∇2Ψ(r, t) = − ω(r, t) (4.6)

Recalling that the Green’s function G(r, r′) for ∇2G = δ(r, r′) in unbounded

domain is G(r, r′) = −1/(4π|r− r′|) (as shown in section A.1) and according

to equation (4.2), the vector potential is the summation over the vector

potential of all the vortons in the domain:

Ψ(r, t) =
1

4π

∑

p

αp(r, t)

|r − rp(t)|
(4.7)

The velocity vector is obtained as the curl of the streamfunction Ψ, as follow

UΨ(r, t) = ∇× Ψ(r, t) =
1

4π

∑

p

[
r − rp(t)

]
× αp(r, t)

|r − rp(t)|
3

(4.8)
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where the velocity components are:

u
ψ

=
1

4π

∑

p

1

|r − rp|
3

[
(z − zp)αyp − (y − yp)αzp

]
(4.9)

v
ψ

=
1

4π

∑

p

1

|r − rp|
3

[
(x − xp)αzp − (z − zp)αxp

]
(4.10)

w
ψ

=
1

4π

∑

p

1

|r − rp|
3

[
(y − yp)αxp − (x − xp)αyp

]
(4.11)

Therefore, the rotational velocity field may be constructed by means of a

linear combination of a set of basis velocity fields, every one of which is

induced by a vorton. Clearly, the implementation results very simple and

easy.

Similarly, the gradient of the velocity used for the vorticity stretching in

the vorticity evolution equation results:

∇ UΨ(r, t) =
1

4π

∑

p

∇

[
(r − rp) × αp(r, t)

|r − rp|
3

]
(4.12)

Regarding the vorton evolution, this is characterized by a change of strength

and position in time. Each vorton displacement derives from the velocity

field caused by the other vortex particle [3].

Now, in the Lagrangian representation, the position evolution of a single

vorton is governed by the velocity vector, as follow

d

dt
rp(t) = Up(rp(t), t) (4.13)

As for the evolution of the particle strength, the biggest difference between

two-dimensional and three-dimensional vortex method is the existence of

the stretching term. In two-dimensional case, since the vorticity direction

is perpendicular to the velocity direction, this term always goes to zero. In

three-dimensional case, the evolution of vorticity is governed by the stretching

term which changes the orientation of the vorticity as well as its value for
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every timestep. Vorton deformation is derived from the Helmholtz equation,

therefore in Lagrangian approach follow

d

dt
αp(r, t) = αp · ∇ Up(rp(t), t) (4.14)

At this point, discretize the equations of the evolution of the vortons using

a forward Euler scheme. First, the position of the vorton is updated,

r(t + 1) = r(t) + Up(r(t), t) ∆t (4.15)

Second, then the strength of the particle is updated,

αp(t + 1) = αp(t) + αp(t) · ∇Up(r(t), t) ∆t (4.16)

Clearly, the use of higher order time stepping method will be beneficial in

increasing solution accurcy.

A system of vortons can, in turn, be used to model body surfaces, con-

tainer boundaries, free-surfaces, internal flows, jet flows, turbulent internal

flow, and wakes in unsteady three-dimensional flow fields.

In the present work, vortons will be used to model wakes in unsteady, in-

viscid and incompressible flows because these vortex elements are more easily

manipulated than the traditional wake sheet representation. In fact, panel

methods presents the need to compute the induction of the flow field due to

four segments of each doublet panel whereas the vorton discretization offers

the possibility to compute the induction due only to a point for every single

vorton. Hence, the vorton method results to be more attractive because it

has also the advantage that the three-dimensional point vortexes are some-

how independent as they do not necessarily belong to a specific wake panel

for all times.

To summarize, the vorton method has been shown in order to solve Pois-

son’s equation in the wake. Moreover, the two evolution equations of the
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position and strength of the vortex particles have been presented also. Now,

it is necessary to compute the initial strength and position of the vortons

when they are created in the wake. Before this, it is necessary to describe

the wake model in detail.

4.2 Conversion of the wake panels to vortons

As seen in above chapter, the wake in a common panel method may be

modeled by means of a distribution of doublets with a strength so that the

Kutta condition at the trailing edge results fulfilled. Now, the goal is to

describe the conversion of the wake panels to vortons for an unsteady wake

model which consists of a distribution of panels and a distribution of vortons.

In the wake model with vortons, the wake is divided into two parts: a

near wake and a far wake. As regard the near wake, close to the wing, the

wake is modeled using a wake sheet slicing the domain. This buffer wake

sheet imposes the prescribed potential jump in the normal direction across

the wake sheet and this is used to account for the vorticity recently shed

into the domain from the wing trailing edge. Regarding the far wake, this

is represented using a distribution of vortons. This wake decomposition is

presented in figure 4.4.

The buffer sheet is at least composed of two rows of panels trailing from

the wing trailing edge. Closest to the trailing edge, the panels of the first

row are unknown wake panels because initially have an unknown strength:

their strength is determined by the Kutta Condition. Instead, the panels of

second row are known wake panels since correspond to the convected previous

time-step unknown wake panels where the Kutta condition was resolved at

t = t − ∆t.
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FAR WAKE (VORTONS)

CONVERSION ZONENEAR WAKE (PANELS)WING TRAILING EDGE

Figure 4.4: wake model with vortons.

As described for the unsteady panel wake, also in this case the first row of

wake panels has a length dimension in the streamwise direction corresponding

to cw|UG| · t where the value of cw is chosen to be 0.25. The panels of the

second row have a known strength corresponding to the previous timestep

trailing edge potential jump with a value of cw is chosen to be 1.

At each time step, the previous time-step second row of wake panels is

converted into vortons.

Similarly to the panel wake model, the wakes will be constructed gradu-

ally at every time step generating a new row of buffer panels closest to the

trailing edge and, furthermore, vortex particles will be created as the near

parts of the wakes evolve.
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An important point that must be considered for the conversion of the

dipole wake sheet to vortons, is the equivalence between the change in dou-

blet strength along the surface and vorticity oriented in the surface tangential

direction normal to the doublet gradient (see section 2.1). In the particular

case of constant doublet panels, the vortex analogue is a vortex ring around

the perimeter of the given panel: hence, the strength of the vortex line seg-

ment between two adjacent constant strength panels is merely the difference

in doublet strengths. Therefore, the vorton is computed by integrating the

strength of the vortex line segments between adiacent panels depending on

the examined model.

For this thesis, several ways of converting the quadrilateral panels into

vortons both in term of location and volume of integration. They are repre-

sented in figure 4.5.
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Figure 4.5: examples of models for the conversion of the near wake panels into
vortons.

To summarize, the conversion is done in the following way [34]:

• the corners of each near panel of the second row are convected with the

local velocity;

• the location and strength of vortons are calculated according to the

relative model used;
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• the strength of the vortex line between the near and the far wake is

updated.

The third model represented in figure 4.5, called DIAS model, has been

compared to the other two models and the panel wake model and it gives a

very close answer for the aerodynamic forces to the theory with rings in the

wake, as will be discussed in the next chapter and, therefore, it is the model

used in this work. This model is characterized by the conversion of the wake

panels to vortons localized on the vertexes of the transformed panels.

Γe
k+2αk+2

αk+1αk+1 Γe
k

Γe
k+1

Γw
k+2

Γw
k

Γw
k+1

Figure 4.6: DIAS vorton wake model - the mechanism of vortex particles gener-
ation.
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With the notation of figure 4.6 the vortons have the following strengths

αk+1 = tk3w(Γkw − Γk+1
w ) + tk3e(Γ

k
e − Γk+1

e ) (4.17)

αk+2 = tk+1
2E (Γk+1

E − Γk+1
W ) +0.5 tk+1

3W (Γk+1
W − Γk+2

W ) +

+0.5 tk+2
3E (Γk+1

E − Γk+2
E ) (4.18)

4.3 Summary

In this chapter, the attention has been addressed to analyse the flow field

induced by any distribution of vortons chosen to represent any wake vorticity

region. Moreover, a new wake model formed by both a distribution of panels

and a distribution of vortons has been described. Particularly, several models

of conversion of the wake panels to vortons have been examined in detail and

between these models the DIAS vorton wake model has given a very close

answer for the aerodynamic forces to the theory with rings in the wake. The

DIAS vorton wake model has been introduced in the panel method solver

PaMS (Panel Method Solver), realized by Caccavale [12]. The PaMS code

has been modified in the way so to be able to model the wake with both the

panel model and the model DIAS, as illustrated in following figures 4.7.

In the next chapter, the changes introduced in the PaMS code to model

the wake also with the DIAS vorton wake and the test case and simulation

examples will be described.
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Figure 4.7: examples of panel wake and vorton wake.
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Chapter 5

PaMS CODE WITH VORTON

WAKES

The validation of the DIAS vorton wake model, described in above chap-

ter, introduced to modify a classical panel method for unsteady flows is the

goal of this chapter. Therefore, several test cases will be made for steady

and unsteady, 2D and 3D flows. Moreover, some simulation examples will

be shown for a variety of boundary and closure conditions, for different ap-

plications.

5.1 PaMS code description

PaMS (Panel Method Solver) code is an open source software for the

resolution of potential flow fields by means of the panel method technique.

The code has been developed at DIAS department in order to have satisfac-

tory analyses and design tool, focusing on a drastic reduction of the costs,

in terms of overall time, resources and man power, by using unstructured

grid with both quadrilateral and triangular panels, and by introducing a
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wide variety of boundary and closure conditions, including the existence of

an air/water interface to perform a variety of aeronautical and naval fluid

dynamic time-dependent calculations. These characteristics permit a greater

simplicity and rapidity during the paneling without alteration of the result

accuracy, permitting to improve the quality of the discretization of the bodies

and to use a numerical representation of CAD designs, making unnecessary

the steps consisting in the geometry treatment and paneling as a satisfactory

acceptable CAD model is available.

Another simplification for the geometry treatment and paneling is an

option for the treatment of eventual intersections between two or more bodies,

which consents to panel separately different parts of a same ensemble (for

example the wing-fuselage group of an airplane) and to reposition these parts

on the basis of specific needs.

Other important peculiarity is the computation of pressure loads directly

in the grid points, by means of a technique of reconstruction and derivation

of the potential function and unlike the mean value in the adjacent control

points. The possibility to dispose values of pressure correctly computed in

the grid points consents to couple a fluid dynamic solution with a solver for

structural analysis using the same paneling. Moreover, due to capacity to

manage possible deformation of the bodies in time, it is simple to use the

PaMS code to do also unsteady computations of fluid-structure interactions,

as in the case of aeroelastic problems (like the sails), putting in new routines

for the structural test or utilizing the coupling with commercial softwares.

At least, the possibility to interface directly with the most diffuse com-

mercial softwares (Gambit, Nastran, Hypermesh, Tecplot) consents to utilize

at one’s best the approximatively developed codes and the codes dedicated

to these operations putting the PaMS code in ideal conditions to increase its
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performances.

This method has been used to solve a number of scientific and techni-

cal, steady and unsteady problems. It seems capable to perform complex

simulations coupled to both structural and dynamics methods and/or by

introducing deformations due to fluid dynamics loads [13].

5.2 Changes in the PaMS code for the intro-

duction of a vorton wake model

This thesis work focuses on the numerical analysis of the vortons for

the modelling of the wake in the panel method solver PaMS that has been

modified in order to consent the use of both the panel wake model and the

DIAS vorton wake model.

The changes in the PaMS code necessary to introduce the DIAS vorton

wake model have been: the introduction of a technique of transformation

of wake panels in vortons, the introduction of the velocity induced by the

vorton distribution, changes in the calculation of the pressure.

Moreover, as described in the above chapter, several models for the con-

version of the near wake panels into vortons have been analyzed, with partic-

ular attention to comparison between the flow field induced by a vorton wake

to the flow field induced by a panel wake. The biggest advantage obtained

with the DIAS model is that it permits to capture both all the circulation of

the wake at the trailing edge and all the circulation of the wing-tip vortex.

Regarding the evolution of the vortons, the importance of the stretching

term on the computation of the lift and drag characteristics is analyzed. The

results of this analysis is that the effect of the stretching term on the lift and

drag coefficients may be negligible. This fact may be explained by posing the
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attention on the significance of the vortex-stretching mechanism for inviscid

and incompressible flows.

It is well-known that a vortex tube which evolves in time deforms but,

nevertheless, its surface remains a vortex tube throughout its deformation.

Moreover, the constancy along the tube’s length of the circulation around it

implies that the absolute value of vorticity is largest where the cross-sectional

area of the tube is smallest, similarly to the fluids acceleration at a contrac-

tion in a stream tube due to conservation of mass. Now, when a vortex tube

evolves in time, its strength does not change with time, therefore reductions

of a cross-section area of a tube cause proportional amplifications of the

vorticity. Because of the incompressibility of the fluid, the volume between

two sections of the tube remains constant and therefore every changing of

the cross-sectional area must be accompanied by a longitudinal stretching.

This is the vortex-stretching mechanism for incompressible and inviscid flows

[58].

The vortex tube of interest in this case is the wake. The deformation of

the wake rises with its strength which, in turn, rises with the rising of the

lifting force. But, because the potential flow model may be applied only for

bodies at low angles of attack with thin airfoils and small curvatures and

hence for small value of the lift, the deformation of the wake is so that the

stretching term in the vorticity evolution equation may be neglected.

Another aspect, examined in this numerical analysis, is the order of mag-

nitude of the unsteady wake potential contribution, as described in chapter

2, for the computation of the pressure over the body. Only for finite-wing

simulations this contribution is small and may be neglected especially for

wing with thin airfoils and small curvatures at low angles of attack.

Moreover, even though a complete discussion of the various convergence
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results for the vorton method is beyond the scope of this thesis, it is observed

that error norms which express convergence to smooth solution of the Euler

equations approach zero as the number of vortons increases and the core size

decreases, under the constraint that the inter-vorton spacing goes to zero

faster than the core size of the vortons, as noted by Marzouk too [39].

The vorton technique for modeling the wake has also shown to not suffer

from large computational time and low accuracy but causes the reduction of

the computational times and maintains the same level of accuracy respect

to the panel wake model, as will be shown in this chapter by means of test

cases.

Finally, we will show and discuss the most important advantage of the

wake modeled by vortons: the possibility of intersection of the wake with

downstream body surfaces.

5.3 Test cases

In order to demonstrate the applicability of the solution approach pre-

sented in this thesis a selection of relevant sample potential flows will be

examined. Particularly, the vorton method will be compared to the panel

method for the modeling of the wake.

5.3.1 NACA 0012 airfoil

The ideal flow theory consents to calculate, with a certain accuracy, the

aerodynamic characteristic of wing sections, even though the simplifying as-

sumptions limit its applicability. In fact, this theory permits the accurate cal-

culation of the pressure distribution, in case of small effects of the viscosity on

the pressure distribution. Moreover, wind-tunnel tests of finite-aspect-ratio
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wing were made in the several NACA wind-tunnels to obtain wing-section

characteristics which permit a further verification of the numerical solutions

with the experimental data obtained with M = 0.15 and Re = 9 · 106 [1].

In this section, NACA 00121 airfoil illustrated in figure 5.1 is examined.
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Figure 5.1: NACA 0012 airfoil - geometry.

To execute a 2D test with a 3D code it is required the use of a wing with

as aspect ratio so to permit substantially the obtaining of a two-dimensional

solution in midsection of the wing. For this reason, a rectangular wing with

a symmetric NACA 0012 airfoil and aspect ratio of 20 is examined in this

section.

The code is set by starting up the wake to impose the Kutta condition

at the trailing edge. In order to value the effects due to wake, three types

of models are compared (see figure and table 5.1): a classical panel wake

1NACA 0012 is a wing-section of the four-digit series where the first integer
represents the maximum value of the mean line ordinate z/c in per cent of chord,
the second integer indicates the distance of the trailing edge to the location of the
maximum camber in tenths of the chord whereas the last two integer indicate the
section thickness in per cent of the chord. Therefore the NACA 0012 wing section
is a symmetrical section and is 12 per cent thick.
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(doublet wake), a vorton wake (DIAS vorton wake), a wake with only two

rows of panels (near wake). For each model, the wake is set rigid (see figure

5.2).

Wake model
Time step

[s]

Length of time

[s]

Number of time

step for wake

doublet wake 5 100 20 panels

DIAS

vorton wake
5 100

2 panels

+ 18 vortons

near wake 5 100 2 panels

Table 5.1: three wake models used for the simulations.

The wing is discretized in 1352 quadrilateral panels: 26 panel widths in

the spanwise direction by 26 panel widths in the chordwise direction with

leading and trailing edge refinement.

In order to validate the numerical results, the analytical and numerical

coefficients of pressure at several angles of attack and the experimental and

numerical lift characteristics are compared, as illustrated in figures 5.3- 5.7.

Observe that, the numerical results obtained by means of the DIAS vorton

wake model present the same level of accuracy obtained by means of the

classical doublet wake. Moreover, the numerical coefficients obtained with

the near wake model show the importance of the vortons in order to have

accurate results. Note that, by means of these characteristics, it is possible

to verify the accuracy of the results and the smallness of the effects of the

viscosity on the pressure distribution for Re = 9.0 · 106 with small angles of

attack (not superior to 12[deg]) for doublet and vorton models. Therefore,
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with these values of Reynolds number and angles of attack, the lift charac-

teristics show a linear trend, whereas for high angle of attack, the lift curve

is not linear: the lift coefficient reaches a maximum value, whereupon the

wing is said to stall since the lift trend is inverted.

DOUBLET WAKE MODEL

NEAR WAKE MODEL

VORTON WAKE MODEL

Figure 5.2: wake models.
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Figure 5.3: NACA 0012 airfoil at zero degrees angle of attack - comparison be-
tween the vorton wake model to the analytical results and the doublet wake model
in terms of pressure distribution.
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Figure 5.4: NACA 0012 airfoil at four degrees angle of attack - comparison be-
tween the vorton wake model to the analytical results and the doublet wake model
in terms of pressure distribution.
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Figure 5.5: NACA 0012 airfoil at eight degrees angle of attack - comparison
between the vorton wake model to the analytical results and the doublet wake
model in terms of pressure distribution.
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Figure 5.6: NACA 0012 airfoil at twelve degrees angle of attack - comparison
between the vorton wake model to the analytical results and the doublet wake
model in terms of pressure distribution.
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Figure 5.7: NACA 0012 airfoil - comparison between the vorton wake model to
the analytical results and the doublet wake model in terms of lift characteristics.

To verify the steady nature of the solution, it is necessary to analyze the

time evolution of the lift coefficient. The importance of this kind of analysis

is also due by to fact that this analysis is useful to understand how much the

wake must be developed before considering the results as steady. In fact, it

is possible to value the distance from the body at which is necessary to make

to extend the wake in order to be able to retain negligible the change of the

solution in time (see figure 5.8).
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Figure 5.8: NACA 0012 airfoil - the time evolution of the lift coefficient for the
DIAS vorton wake.

5.3.2 NACA 63 mean line

Similarly to the NACA 0012 airfoil, it is required the use of a wing with

high aspect ratio. Therefore, a rectangular wing with aspect ratio of 20

and with the NACA 632 mean line is examined in this section (see figure

5.9). Also for this test case, the wing is discretized in 26 panel widths in the

spanwise direction by 26 panel widths in the chordwise direction with leading

and trailing edge refinement and, moreover, the wake is set rigid. The biggest

difference between this test and the NACA 0012 is the absence of thickness

which makes necessary the use of the Neumann boundary condition.

In figure 5.10 the comparison between the numerical and analytical solu-

tions in terms of ∆Cp between upper and lower surfaces of the wing section

is illustrated for the several wake models. The comparison has been made in

2The NACA 63 mean line is characterized by 6 per cent camber at 0.3 of the
chord from the leading edge.
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Figure 5.9: NACA 63 mean line - geometry.

condition of ideal angle of attack and the results in terms of lift coefficient

are reported in table 5.2.

Cli

αi

[deg]
Abbott

DIAS

vorton wake
doublet wake near wake

1.6 0.80 0.74 0.73 0.71

Table 5.2: NACA63 mean line - analytical and numerical lift coefficients.

As well in this case, to verify the steady nature of the computation, the

convergence story of the lift coefficient has been used (see figure 5.11).
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Figure 5.10: NACA 63 mean line at 1.6◦ ideal angle of attack - comparison
between the vorton wake model to the doublet model and the analytical results in
terms of pressure distribution.
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Figure 5.11: NACA 63 mean line - the time evolution of the lift coefficient.
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5.3.3 Elliptic wing

The elliptic wing is a common test case and as so, the comparison of

data from the Prandtl theory in the case of an elliptical lift distribution

is made herein. There exist infinite ways to obtain a wing with elliptical

lift distribution. One of this particularly interesting results is characterized

by absence of geometric twist (that is, the geometric angle of attack αg is

constant along the span) and aerodynamic twist (that is, Clα and αzl are

constant along the span) and an elliptical chord distribution along the span3

[5][60]. For an elliptical wing the characteristics of lift and induced drag are

CL =
Clα

1 + Clα
πAR

(α
eff

− α
zl
) (5.1)

CDi =
C2
L

πAR
(5.2)

where AR is the aspect ratio and the angle α
eff

[rad] is the effective angle of

attack which results

α
eff

= α
g
− α

i
= α

g
−

α
g

1 + 4b
Clαc0

(5.3)

where c0 is the chord at the midsection of the wing.

In this examination, an elliptic wing with a symmetric NACA 0009 airfoil

and aspect ratio of 10 is used. The wing is discretized in 26 panel widths

in the spanwise direction by 16 panel widths in the chordwise direction with

leading and trailing edge refinement and, moreover, the wake is set flexible

(see table 5.3).

The results are illustrated for each model wake in table 5.4 and figures

5.12-5.13. Observe that, with a vorton wake, it is obtained the same level of

3For wings with elliptical lift distribution, the most interesting and important
result is that the downwash is constant over the span and so the induced angle of
attack is also constant along the span
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Wake Model
Time step

[s]

Length of time

[s]

Number of time

step for wake

doublet wake 0.5 15 20 panels

DIAS

Vorton wake
0.5 15

2 panels

+ 18 vortons

near wake 0.5 15 2 panels

Table 5.3: three wake models used for the simulations.

accuracy for the computation of the lift and induced drag obtainable with

a doublet wake and, therefore, these results present the same differences in

comparison to the Prandtl theory. This is evident with both techniques for

the calculation of the forces: the pressure integral and Trefftz plane. At

last, the important difference existing between the vorton wake model and

near wake model shows the influence of the wake vorticity field modeled by

vortons on the coefficients of lift and induced drag.
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PaMS

Trefftz plane

PaMS

Pressure integral

Prandtl

theory

Wake

Model
CL

CDi

[count]
CL

CDi

[count]
CL

CDi

[count]

α = 0◦

doublet 0.0000 0 0.0000 11 0.0000 0

vorton 0.0000 0 0.0000 11 0.0000 0

near 0.0000 0 0.0000 11 0.0000 0

α = 4◦

doublet 0.3666 46 0.3702 47 0.3655 43

vorton 0.3667 47 0.3702 47 0.3655 43

near 0.2748 42 0.2757 54 0.3655 43

α = 8◦

doublet 0.7367 182 0.7432 156 0.7311 170

vorton 0.7371 184 0.7428 154 0.7311 170

near 0.5514 165 0.5511 183 0.7311 170

α = 12◦

doublet 1.1165 409 1.1249 340 1.0966 383

vorton 1.1163 411 1.1221 333 1.0966 383

near 0.8324 369 0.8273 396 1.0966 383

α = 16◦

doublet 1.5104 725 1.5190 602 1.4622 681

vorton 1.5087 727 1.5117 587 1.4622 681

near 1.1209 649 1.1051 688 1.4622 681

1 count = 10−4

Table 5.4: elliptic wing at several degrees angles of attack - comparison between
numerical and theoretical results.
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Figure 5.12: elliptic wing lift characteristics - comparison between doublet model
and vorton wake model with the technique of the Trefftz plane.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

100

200

300

400

500

600

700

800

C
L

C
D

i [c
ou

nt
]

 

 
Doublet wake
Vorton wake
Near wake
Prandtl theory

Figure 5.13: elliptic wing drag characteristics - comparison between doublet wake
model and vorton wake model with the technique of the Trefftz plane.
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5.3.4 Unsteady pitching airfoil

In order to validate the unsteady time dependent flow solution capabilities

of the method presented, an unsteady pitching airfoil will be examined in this

section [59][66][27]. This test case demonstrates the ability of the solver to

compute unsteady flows in which wake-body interactions play an important

role in the overall production of the forces. The pitching airfoil simulations

are compared to analytical expression for an oscillating two-dimensional thin

airfoil which is presented by Theodorsen and to experimental data with M =

0.3 and Re = 3.9 · 106, resulted by unsteady wind-tunnel for the NACA 0012

airfoil [36][37][49][54] of whom those with pitching motion about a point on

the airfoil chord at a distance 1/4 of the chord from the leading edge. The

instantaneous angle measured clockwise from the mean chord is α:

α(t) = αm + αa sin(ωt + φ) = 2.64◦ + 10.16◦ sin(ωt − π/2) (5.4)

where ω = 2U∞/ck is the frequency relate to the so called reduced frequency

k, αm is the mean angle of attack, αa is the amplitude of pitching oscillation,

φ is the phase angle ahead of the pitching motion (see figure 5.14).

The computational results presented and compared with the Theodorsen

theory and the experimental data in figure 5.15 compare favorable both with

theory results to test data. This result is due to the method accuracy repre-

senting the unsteady vorticity in the wake.
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Figure 5.14: NACA 0012 airfoil - pitching.
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Figure 5.15: NACA 0012 airfoil - comparison between the numerical analysis to
the Theodorsen theory and the experimental data in terms of lifting coefficient
resulting from pitching motion.

The simulation results for the pitching oscillations demonstrate the ver-

satility and easy use of the panel method with the vorton wake method. In

figure 5.16 vorticity wake structure plots presented for examined pitching

motion illustrate both the vorticity structure and the vorticity evolution in
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time.

t=72sec

t=84sec

t=90sec t=96sec

t=78sec

t=66sec

Figure 5.16: example of pitching motion for a NACA 0012 airfoil.
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5.4 Vertical-axis wind turbine

The basic aim of these investigations is to focus on performance behavior

of the PaMS code with the DIAS vorton wake model when the wake intersects

with body surfaces.

Vertical-axis wind turbines are vertical-axis rotors that may be submerged

and subject to an incoming flow. The blade has straight rectangular with a

high aspect ratio and it is connected to the rotor shaft by one or more arms.

The blade has a blade pitch degree of freedom given by the possibility to

rotate around a spanwise hinge axis between two fixed positions.

5.4.1 A single-bladed turbine

For this test, the numerical results will be compared to results and of

experiments conducted to determine the characteristics of the unsteady blade

loadings and dynamic stall phenomena as they occur on Darrieus turbines [46]

which will be described briefly herein. A single-bladed turbine with a NACA

0015 airfoil operated in a water tow tank with a depth of 1.25 meters, a width

of 5 meters, and a length of 10 meters. An airfoil chord length of 15.24 cm

and a rotor tip speed of 45.7 cm/sec were chosen to yield a blade Reynolds

number of 6.7 · 104. Three towing speeds of 18.3 cm/sec, 9.1 cm/sec, and 6.1

cm/sec were chosen: in this test only the speed of 9.1 cm/sec is considered

to yield tip-to-wind speed ratio 5.0. The rotor diameter was chosen to be

1.22 meters, thus giving a chord to radius value (indicative of the oscillation

frequency) of C/R = 0.25 and the tip-to-wind speed ratio (indicative of the

oscillation amplitude) was varied over a limited range. Measurements of

radial and tangential forces using strain gage instrumentation.

In order to analyse the effects due to wake model on the simulations,
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begin by considering a rigid panel wake model. Figure 5.17 shows, in three-

dimensional view, the blade which intersects with wake released by itself. The

impact determines a temporary loss of performance of the impacting blade.

Specifically, pressure distribution on the blades is dramatically affected by

the impact of wake vortices released by other blades.

W
IN

D

Figure 5.17: single-bladed vertical-axis turbine - rigid panel wake.

When the wake is modeled by flexible panels and the blade impacts on

the vortical wake released by itself, the solution becomes numerically instable

because of the disconnection between the wake panels. Figure 5.18 illustrates

a scheme of this numerical instability.

When the wake is modeled by vortons, because of the fact that the vortons

are somehow independent as they do not necessarily belong to a specific

vortex filament or sheet for all time, the solution keeps stable when the

blade impacts on the vortical wake released by itself (see figure 5.20-5.19).
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Figure 5.18: single-bladed vertical-axis turbine - Numerical instability of panel
methods with flexible panel wakes.

105



PaMS CODE WITH VORTON WAKES

W
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D

Figure 5.19: single-bladed vertical-axis turbine - DIAS vorton wake.

At this point, analyze the results of these simulations in terms of radial

and tangential forces on blade, for both the cases of rigid panel wake and

DIAS vorton wake.

Typical blade forces4 are shown in instantaneous progression of figures

5.21, 5.22. The tangential forces are an order of magnitude smaller than the

radial forces and thus tends to be more difficult to measure. For the radial

and tangential forces the agreement between the strain gage measurements

and numerical results is seen to be reasonably good in the upstream region

between 0◦ and 180◦. Such agreement continues in the downstream region

between 180◦ and 360◦ only between the experimental and numerical results

obtained modeling the wake with the DIAS vorton wake because, for the

4A positive radial force acts radially outward while a positive tangential force
acts in the direction of motion of the airfoil.
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Figure 5.20: single-bladed vertical-axis turbine - solution stability of panel meth-
ods with vorton wakes during the intersection of the wake with the body.
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panel wake, the obtained forces are dramatically affected by the impact of

wake vortices released by the blade. In fact, the ripples in the numerical

results represent the regions of bladewake impacts: physically, the interaction

of a blade with its wake is responsible for a sudden change of the pressure

distribution on the blade surface and hence of blade-generated loads. The

results show that the PaMS with a rigid wake model tends to overestimate

blade forces during the impact phase whereas with the DIAS vorton wake

model this overestimate does not occur.

Observe, moreover, that the imperfect accuracy of predicted forces ob-

tained with the DIAS vorton wake model compared to the experimental may

be explained noting that these forces are, however, affected by viscosity not

included in the PaMS code.
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Figure 5.21: single-bladed vertical-axis turbine - radial forces on blade during a
revolution. Numerical result compared to experimental data.
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Figure 5.22: single-bladed vertical-axis turbine - tangential forces on blade during
a revolution. Numerical result compared to experimental data.

5.4.2 A three-bladed turbine

For the case of a three-balded turbine, the simulation is made in the same

conditions of the single-blade case, simply by disposing three blades at angles

of 120◦.

Observe that the possibility of wake/blade impingement depends on the

ratio between the wind speed and the turbine rotational speed and increases

as the number of turbine blades is increased. A suitable wake model to take

into account these effects is certainly a vorton wake (see figure 5.23).
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Figure 5.23: three bladed turbine - vorotn wakes.

Analyze the radial and tangential forces along the rotor revolution angle

for one single blade and the turbine power. As shown in figure 5.24 and 5.25,

the maximum values reached by these forces in the upstream region between

0◦ and 180◦ are lower than the maximum values shown for the case of single

blade.

The multi-bladed turbines are important for industrial applications which

are oriented towards the production of electric power. Figure 5.26 shows the

evolution of the power developed by the three bladed turbine.
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Figure 5.24: three bladed turbine - radial force.
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Figure 5.25: three bladed turbine - tangential force.
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Figure 5.26: three bladed turbine - power.

5.5 Intersection of the wake of a pitching and

heaving wing with a downstream fixed

wing

In this section, the attention is focused on the behavior of the PaMS code

with the DIAS vorton wake model when the wake of a pitch-heaving wing

intersects with downstream fixed wing.

The pitching and heaving wing is a straight rectangular wing with a high

aspect ratio (AR = 20) with a NACA 0012 airfoil and chord length of 1 m.

The downstream body is a straight rectangular wing with the same aspect

ratio and airfoil of the upstream oscillating wing.

In this case, the impact of the wake with the body may be modeled by

means of a flexible panel wake, as illustrated in the upper side of figure
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5.27, but the level of accuracy obtained by this model is lower than the level

obtained using the DIAS vorton wake model, shown in the lower of figure

5.27. In fact, the intersection of the downstream body with the upstream

wake causes, in the case of panel wake, a sudden change of the pressure

distribution on the downstream wing.

In order to analyse the effects due to wake of the oscillating wing on the

pressure distribution over the downstream wing, the results of this simulation

in terms of lift coefficients are analyzed.

Figures 5.28 and 5.29 show the lift coefficient for the upwing and down-

wing wings in the cases of panel wake and vorton wake, respectively. The

lift coefficient of the downstream wing presents a periodic function which has

the same frequency of the normal force oscillation of the upstream wing but

with a phase shift near 180◦. The maximum value of the lifting coefficient

on the no-oscillating body verifies when, for the upstream wing, the value of

the normal force is close to its maximum. Observe that, when the wake is

modeled by vortons, the lifting coefficient of the downstream body does not

present sudden changes and so its function is smooth differently from the

case of doublet wake.
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Figure 5.27: 3D view of the intersection of the wake of an upstream pitching and
heaving wing with downstream wing for both the doublet wake (on upper side)
and vorton wake model (on the lower side).
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Figure 5.28: the lift coefficients of a pitching and heaving wing and a downstream
fixed wing obtained using the doublet wake model.
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Figure 5.29: the lift coefficients of a pitching and heaving wing and a downstream
fixed wing obtained using the DIAS vorton wake model.
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5.6 Helicopter rotor in hover

The helicopter rotor in hover is an important application in order to an-

alyze the performance behavior of the DIAS vorton wake model when the

wake intersects with body surfaces. So, a benchmark test for a model rotor in

hover of which data were gathered in the Army Aeromechanics Laboratory’s

hover test facility [15][25] will be considered. The rotor used for the experi-

ments had a diameter of 2.286 m and employed two untwisted and untapered

blades with a NACA 0012 airfoil and a chord of 0.169 m.

For this test, the numerical investigation is carried out on the following

configuration: a pitch setting of 8◦, a rotational speed of 1250 rpm, a rotor

tip Mach number of 0.439 and a rotor tip Reynolds number of 2.5 · 106.

Moreover, we consider only the results obtained by modeling the wake with

vortons.

The helicopter rotor in hover consists in a rotor able to generate thrust

even though the free stream has a velocity value pair to zero [61]. The accu-

rate computation of helicopter rotor flows in hover is a particular challeng-

ing problem due to the inherent difficulties that it entails. Reliable predic-

tion of helicopter hover is heavily dependent on the proper resolution of the

blade/vortex interaction [4], particularly during the first revolutions in which

the vertical velocity is in transient conditions. Figure 5.30 shows the ability

of PaMS code with the DIAS vorton wake model to simulate helicopter rotor

flows in hover.
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Figure 5.30: a model helicopter in hover - the evolution of the wake modeled with
vortons.

Figure 5.31 shows the evolution of thrust coefficient. It is possible to

observe that, at the start, the thrust coefficient rises till one blade impacts

on the wake generated by the other blade. The thrust coefficient continues to

reduce for the successive wake/blade intersections till it reaches the steady-

state conditions. In these conditions, the numerical results obtained with the

DIAS vorton wake model are very close to the experimental results.

Regarding the lift coefficient along the spanwise, figure 5.32 shows the lift

coefficient distribution in several revolutions. Observe the reduction of the

lift coefficient at the rise of time, similarly to the thrust coefficient, and the

numerical results are close to experimental results in steady condition.
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Figure 5.31: a model helicopter in hover - the evolution of the thrust coefficient.
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Figure 5.32: a model helicopter in hover - the lift coefficient distribution in several
revolutions.
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This thesis presents a vorton wake model for panel method technology

and for this reason, several contributions have been made.

From the analysis of the vorton method it has been observed that the

vorticity field may be replaced by a set of three-dimensional point vortexes,

called vortons or vortex particles which evolve in Lagrangian manner. These

computational elements are somehow independent unlike the vortex rings and

the vortex filaments, and, therefore, vortons are an important alternative

to the use of the classical vortex computational elements. Moreover, the

flow field induced by a distribution of vortons results to be rotational and

solenoidal. This is due to the fact that the potential vector associated to

the vorton element is solution of the Poisson’s equation. Therefore, the wake

vorticity that is the rotational region of the fluid domain may be modeled by

vortons and the velocity vector for potential flow problems may be defined

by means of the Helmholtz decomposition.

In order to model the wake by means of vortons, these computational

elements are generated by converting the classical wake panel methods to

vortons. From the analysis of several models of conversion it has been ob-

served that the model that gives the higher accuracy in terms of aerodynamic

forces in comparison to the classical panel wake is the model in which the

vortons, localized on the vertexes of the transformed panels, capture all the

119



Conclusions

circulation of the transformed panel wake. The vorton wake model obtained

by means of this kind of conversion has been called DIAS vorton wake model

and introduced into PaMS panel method solver.

For the DIAS vorton wake model, the importance of some terms on the

computation of the lift and drag characteristics has been analyzed. Partic-

ularly, the effect of the stretching term in the vorticity evolution on the lift

and drag coefficients may be negligible. Similarly, the unsteady vorton po-

tential contribution to the computation of the pressure over the body may

be negligible.

The vorton wake model developed in this thesis has been demonstrated

to be efficient and accurate for steady and unsteady design and analysis

problems. Particularly, the vorton representation of the wake represents a

powerful and useful tool when hands-off unsteady and steady potential flow

simulations are desired. This hands-off operation for potential flow simula-

tions saves users significant setup costs and permits an important increase

in accuracy in comparison to the classical panel wake model. Therefore, the

vorton technique is a contribution which combined with the panel method

technology provides an advanced potential flow analysis in which potential

flow simulations may be easily performed requiring: minimal user setup time

due to automatic wake generation strategies, minimal user expertise in wake

modeling due to the use of automatic vorton wake generation, minimal user

interface due to the hands off automatic wake strategies.

In the end, several directions of future work will be considered. The

continued development of vorton wake models will be used to analyze com-

plex unsteady potential flow problems like, for example, heaving motion and

rolling motion for aircraft, rotor aerodynamics, multi-body problems and,

in particular, aircraft in close proximity. The development will be focused
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on viscous diffusion in the vorton wake to provide accurate vorticity wake

models for lower Reynold’s number flows.
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The solution of Poisson’s

equation

A.1 Derivation of the solution of Poisson’s

equation

There exist different ways to solve Poisson’s equation for the potential

which requires integration over a finite region of interest. For this work,

Green’s second identity which, as shown in chapter 2, is a consequence of the

divergence theorem, allows to write a solution of Poisson’s equation as well

as the Green’s function (defined in unbounded domain) that will be chosen

so as to cause one of the terms in the surface integral to drop out. In this

way, the solution of Poisson’s equation will be composed by an integral over

a finite volume and an integral over the bounding surface.

Consider a closed volume V bounded by a surface S. Let φ1 and φ2 be

scalar fields defined on V and S. The Green’s Second Identity states that

∫

V

(
φ1∇

2φ2 − φ2∇
2φ1

)
dV =

∫

S

(
φ1

∂φ2

∂n
− φ2

∂φ1

∂n

)
dS (A.1)
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Let’s use this theorem to write the solution of Poisson’s equation. Particu-

larly, let

φ1 = Ψ(r) (A.2)

and

φ2 = G(r, r′) = −
1

4π|r − r′|
(A.3)

where r represents the coordinate of the field point and r′ represents the

coordinate of the source point. Let

∇2G(r, r′) = δ(r − r′) (A.4)

where δ(r − r′) is a simple delta function. The Second Green’s Identity

becomes

∫

V

(
Ψ(r)∇2G(r, r′) − G(r, r′)∇2Ψ(r)

)
dV =

=

∫

S

(
Ψ(r)

∂G(r, r′)

∂n
− G(r, r′)

∂Ψ(r)

∂n

)
dS (A.5)

∫

V

(
Ψ(r)δ(r, r′) +

1

4π|r − r′|
∇2Ψ(r)

)
dV =

= −

∫

S

(
Ψ(r)

∂

∂n

(
1

4π|r − r′|

)
−

1

4π|r − r′|

∂Ψ(r)

∂n

)
dS (A.6)

If r′ lies in the volume V , then

Ψ(r′) = −

∫

V

(
1

4π|r − r′|
∇2Ψ

)
dV +

−
1

4π

∫

S

(
Ψ(r)

∂

∂n

(
1

|r − r′|

)
−

1

|r − r′|

∂Ψ(r)

∂n

)
dS (A.7)

By supposing to have Dirichlet boundary conditions on some surface, let

that surface be S, so V will be the enclosed volume. Moreover, choose a
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homogeneous solution to add to G(r, r′) so that it will be zero on the whole

surface S. Thus, the surface integral term is always zero, and there is no need

to know what the normal derivative of the potential is, therefore

Ψ(r′) = −

∫

V

∇2Ψ

4π|r − r′|
dV (A.8)

As regard the vector velocity potential, this is governed by the Poisson’s

equation. Furthermore, substituting ∇2Ψ = −ω in the above relationship

and considering the unsteady nature of the problem, the velocity vector po-

tential due to vorticity in the domain results:

Ψ(r, t) =
1

4π

∫ ∫ ∫

V

ω

|r|
dV ′ (A.9)

The velocity induced by vorticity can be obtained by taking the curl of the

above equation:

∇× Ψ(r, t) = ∇×
1

4π

∫ ∫ ∫

V

ω

|r|
dV ′ (A.10)

Similarly, the gradient of the velocity term used for the vorticity stretching

in the vorticity evolution equation is determined by taking the gradient of

the above relationship:

∇ (∇× Ψ(r, t)) = ∇

(
∇×

1

4π

∫ ∫ ∫

V

ω

|r|
dV ′

)
(A.11)
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