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I N T R O D U C T I O N

outline

The thesis has been divided into 3 chapters :

1. The first chapter includes the theoretical background under-
neath the unsteady vortex lattice method.

2. The second chapter shows the development of an unsteady vor-
tex lattice method in MATLAB scripting environment.

3. The third chapter consists of the validation and peculiar results
for steady and unsteady motion, general geometries with re-
spect to analytical solutions and other numerical solutions.

motivation

During some phases of aerodynamic design the necessity of a fast
and reliable determination of properties of lifting surfaces via numer-
ical methods (Computational Fluid Dynamics) makes potential flow
numerical methods (e. g.panel methods) more advisable than time-
consuming complete Navier-Stokes equations solvers (e. g.finite dif-
ference method, finite volume method), though it can be stated that
potential model represents the lowest level on a hierarchy of approxi-
mations of Navier-Stokes equations.
Anyway the potential flow is often a close condition to the design
point of many aerodynamic bodies [17].

Panel methods discretize body’s surfaces into panels composed by
field singularities (vortices, doublets and sources) and solve a bound-
ary integral equation through linear algebraic systems, thus they lead
to the calculation of velocity and pressure on surfaces allowing to save
time from computing those quantities in the entire fluid volume [9].
The vortex lattice method is a panel method in which the singulari-
ties chosen to substitute the lifting surfaces and the wake are vortices
and their velocity inductions is computed via Biot-Savart law.

1



2 introduction

overview

The aim of this work is to investigate the capabilities of a newly de-
veloped vortex lattice method based on vortices sheets and vortex
particles (vortons) in unsteady potential flows. This method can be
employed for preliminary design and optimization of lifting surfaces
in steady or unsteady conditions, such as in HALE (High-Altitude
Long-Endurance) aircraft.

Indeed high aspect ratio aircraft are capable of longer and more
efficient flights due to the benefits on induced drag and lift but they
are also likely to suffer fluid-structure interaction and unsteady aero-
dynamics phenomena because longer wings increase flexibility.

The wing is modeled by placing vortex rings on the non-planar sur-
face. Variations in twist angle and airfoil shape is taken into account
by rotation of the normal vector of the panels.
An unlimited number of wing’s segments can be modeled, each seg-
ment is defined by 6 parameters : span length, taper ratio, sweep
angle, dihedral angle, root twist angle and tip twist angle.
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literature review

A short review of the literature consulted is here reported to show
vortex lattice methods development and applications in history.

As said before, potential flow field, namely incompressible, irro-
tational, inviscid flow is governed by the continuity equation in the
form of the Laplace equation in terms of the velocity potential Φ :

∇2Φ = 0 (1)

This linear, elliptic, partial differential equation must be associated
with boundary conditions on the domain of interest (typically flow
tangency for impermeable bodies and velocity disturbance vanishing
at infinity) and a condition which closes the circulation problem, be-
ing generally more complex to express.
Solutions of this boundary-value problems may come both from an
analytical method for specific geometries (e.g. conformal transforma-
tions, Prandtl’s theory) or a numerical approximated solution (e.g.
panel methods).
Analytical methods to solve potential flows have been widely devel-
oped during the 20th century for 2D and 3D geometries, and they
represent the beginning of every rational lifting surface’s analysis,
thus they are described in detail in every textbook [9], [2], [17].

As mentioned before, analytical solutions of potential flows have
been found for a limited number of geometries, thus approximated
numerical solutions have always been of primary interest for aeronau-
tical (and nautical) engineering applications [9], [2], [17].

The vortex lattice method is the natural extension to 3D geometries
of the properties of flat plate’s 34 chord point, analysed by E.Pistolesi
more than a century ago [17].

One of the first applications of steady vortex lattice method to com-
puters was developed in FORTRAN programming language by R. J.
Margason and J. E. Lamar at NASA in the year 1971 [19].
A huge collection of vortex lattice method’s early literature has been
made by NASA during a conference about vortex lattice method uti-
lization in 1976 [16]. In that conference the state-of-art of vortex lattice
method was established and future developments were presented.
The aim of many studies was to extend the vortex lattice method to
unsteady motion, which required to take account of time-evolving
wake structures and update of boundary condition in time domain.
For example P.Konstandinopoulos [10] developed an unsteady vortex
lattice method which showed good agreement in force and moments
evaluation and so did A.Sakurai [1] who focused his study on vortex
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properties such as de-singularised cores.
Nonetheless the interest of these authors for vortices shedding in
steady motion and wake evolution was lift up by slender wings which
couldn’t be modelled by existing steady methods.

Vortices structures properties were deeply analysed by G. S. Winck-
elmans and A. Leonard in their studies which also gave a mathematical-
oriented point of view of the implementation and utilization of vortex
particles singularities in fluid-dynamic tools [5].

Since then, the possibilities coming from increasing computer pro-
cessing capabilities has lead many research institutions and universi-
ties to develop their own vortex lattice methods and to add features
to those already existing.
Among the others, TORNADO, created by T.Melin [14], has been one
of the first open-source vortex lattice methods implemented in MAT-
LAB.

Recent interest in flapping flight and high-aspect ratio’s flexible
wings lead to unsteady applications of vortex lattice methods.
L.N. Long and T.E. Fritz used object-oriented programming account-
ing for general motion and very complex lifting surfaces geometries
to model birds’ flapping flight [12].

Another approach to the wake model is to replace the vortex-rings
made by vortex-filaments with discrete vorticity particles or vortons,
giving the chance to extend this method to a multi-body panel method
(in fact vortons don’t suffer from intersection with body panels) and
decreasing significantly the time of simulations. The formulation of
this method, both theoretically and numerically was developed by
[5] while [3], [11] and [4] emplyed the vortons wake model in the
unsteady vortex-lattice method. These methods showed very good
agreement between calculations and experimental data, demonstrat-
ing the capabilities of unsteady vortex lattice methods with vortons
in the wake model as fast and reliable aerodynamic tools.

Furthermore unsteady vortex lattice methods are largely employed
nowadays, especially in those aeroelastic frameworks which require
time-domain aerodynamic analyses, such as those developed by C. de
Souza, J. Murua, R. J. Simpson, H. Hesse and J. A. Geoghegan, [23],
[15], [22], [7], [6].

Current research is directed towards investigating vortices struc-
tures shedding at the leading edge in low Reynolds flows which have
been demonstrated to behave in a very similar fashion to vortices
shedding at the trailing edge and thus modelled in unsteady vortex
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lattice methods (both 2D and 3D) [4], [20], [18], [8].



1
T H E O R E T I C A L B A C K G R O U N D

The derivation of numerical aerodynamic methods has been success-
fully achieved through ages of analytical and experimental studies
and the help of an increasing computational power has amplified
their possibilities.
Without the basic theoretical concepts of aerodynamics and its pecu-
liar theories the utilization of a numerical method to accomplish tasks
like evaluating lift and drag would be impossible.

Aerodynamics is the branch of physics that deals with the interac-
tions between bodies and air in relative motion, and as a consequence
of it, the generation of forces and moments. It is a sub-field of fluid
dynamics, which more generally includes interactions between bod-
ies and different kinds of fluid.

This chapter follows the main steps towards the solution of the un-
steady, potential, incompressible flow field and the derivation of the
numerical method called unsteady vortex lattice method.

1.1 principles of aerodynamics

When a body and air are in relative motion, forces and moments are
generated on the surfaces of the body, namely the aerodynamic force
and aerodynamic moment.
These forces and moments depend upon flight conditions, such as
height, flight speed, and body attitude w.r.t velocity vector and on
body configuration, its actual geometry [17].

The aim of aerodynamic studies is to evaluate aerodynamic forces
and moments in every phase of a flight mission of an aircraft.

If we restrict our analysis to flying bodies heavier than air, called
aerodynes, we can generally assume a common shape made of a fuse-
lage, containing loads, the lifting surface or wing, generating the aero-
dynamic force essential to fly, stability and control surfaces, which let
the pilot steer the aircraft and keep it stable and engines, which pro-

7



8 theoretical background

pel the aircraft.
By the way, aircraft shape is affected by state-of-art technology and
sometimes the geometry is unconventional, such as the "flying wings"
in which the fuselage and the wing are integrated.

(a) Dassault Falcon 2000 (b) Northrop B2 Spirit

Figure 2: An example of a conventional and an unconventional architecture
aircraft.

We are interested in evaulating the aerodynamic force and moment,
thus we need to specify a cartesian reference frame in which these
quantities can be more easily calculated and have peculiar meanings.

1.2 reference frames

The body reference frame (BRF) is fixed to the aircraft, centered in its
mass center, with the x axis along the fuselage, the y axis in the lateral
direction, and z upward.

The wind reference frame (WRF) is fixed to the aircraft, centered in
its mass center but the axis lays on the direction of the undisturbed
relative velocity vector V∞, the z axis is the intersection between the
vertical plane that contains V∞ and the orthogonal plane to velocity
vector passing through the mass center (G) , and the y axis complete
the orthogonal triad.

The attitude of the aircraft in terms of the BRF with respect to the
WRF determines its aerodynamic behaviour; two angles give the atti-
tude of the BRF, the angle of attack α and the side-slip angle β. The
angle of attack is the angle between xw and its projection onto the
BRF plane (xb - yb) while the side-slip angle is the angle between xw
and its projection onto the BRF plane (xb - zb) as shown in fig. 3.
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1.3 forces acting on a lifting surface

Thus we define the lift (L), the drag (D), and side force (Y) as the
projection of the aerodynamic force respectively onto the zw, xw, yw
axes of the WRF.
In the simplest but effective model of an aircraft as a mass point,
it is immediately clear that lift is what counteracts weight (W) and
possibly pushes the aircraft up, but drag must be overcome to go
forward, so the necessity of engines which produce thrust (T).

Figure 3: Wind and Body reference frames (Reproduced from [13])

The nondimensionalization of lift and drag in terms of lift and drag
coefficient is

CL =
L

1
2ρ∞V2∞S

(2)

CD =
D

1
2ρ∞V2∞S

(3)

where ρ∞ is the freestream dynamic pressure, V∞ is the freestream
velocity and S is the chosen reference surface.

As regards the wide and complex discipline of aerodynamic de-
sign, it is necessary to calculate a big amount of data describing the
aerodynamic effects generated by interaction between a body and air
in relative motion.
Some of these data can be nondimensional and have a simple formu-
lation, such as those global coefficients which depends on indepen-
dent variables, others are more complex and distributed over surfaces,
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such as thermodynamic quantities, and they require a lot of effort in
calculation.

1.4 derivation of the laplace equation

This section describes the derivation of the Laplace equation through
the application of the balance equations.
As many others analytical models, the system derived from Laplace’s
equation is well-suited for a limited number of physical phenomena
and it should be integrated with more complex analyses to get a full
knowledge of the actual flow field (e. g. boundary layer equations for
the viscous phenomena).

Fluids properties

It is now necessary to introduce the basic properties of fluids be-
fore presenting the formulation of the equations which model fluid-
dynamic phenomena.
Fluids are substances which cannot react to shear stress, or similarly
have zero shear modulus.
When a force is applied tangential to a fluid, the fluid will start to
flow, with a velocity depending on its viscosity.
We conclude that there must be a relationship between the tangen-
tial force (shear force) applied and the velocity of deformation of the
fluid.

Viscosity

Viscosity is the property of fluids which relates the shear stress to
the velocity of deformation, and it can be seen as the aptitude of
fluid layers to flow on each other and/or onto a solid surface. It is
ineherently related to the chemical composition of the fluid and its
temperature.
For Newtonian fluids the relationship between shear stress on a unit
area and velocity of deformation is [21]

τ = µ
∂ux

∂y
(4)

where τ
[
N/m2

]
is the shear stress, µ [kg/m s] is the viscosity coeffi-

cient and
∂ux

∂y
is the rate of change of x velocity of deformation along

y direction.
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This formula models the one-dimensional motion with variation of
velocity along the perpendicular direction.

Taking into account all the 3-dimensional velocities and their deriva-
tives, the dissipative stress tensor is obtained as follows

τ
d
= 2µ (∇V)s0 (5)

or extended

 σx τx y τx z

τy x σy τy z

τz x τz y σz

 = µ


2
∂u

∂x

∂u

∂y
+
∂v

∂x

∂u

∂z
+
∂w

∂x

∂v

∂x
+
∂u

∂y
2
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂x
+
∂u

∂z

∂w

∂y
+
∂v

∂z
2
∂w

∂z

 −
2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)1 0 0

0 1 0

0 0 1


(6)

From this formulation of the stresses generated by viscosity of flu-
ids we get the following result: if we consider that shear stress can’t
assume infinite values, they tell us that viscosity smoothen velocity
field discontinuities, and when a fluid is in relative motion with a
solid surface there is still a region, close to the surface, where the
fluid is not moving, the so-called boundary layer[3].

It is now clear that if we want to evaluate the shear stress, i. e. the
friction of the fluid onto a solid surface, we must take into account
the viscosity of the fluid.
Solutions of the boundary layer equations are the only rigorous phys-
ical processes able to evaluate drag that is generated by friction.

Reynolds number

We are interested in evaluating the effects of viscosity through a sim-
ple formula which would tell us the relation between viscous stresses
and inertial forces.
The Reynolds number, used for the non-dimensionalization of the
Equilibrium equation (see sect.), contains the information about the
geometry, the kinematics and the thermodynamics, relative to the vis-
cous effects, of the fluid-dynamic phenomenon we are modelling.

Re =
ρrefVrefLref

µ
(7)
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where ρref is the reference density, Vref is the reference velocity,
Lref is the reference length and µ is the viscosity.
The use of a reference length ties Reynolds number to the extension of
the flow field of our interest. This point is fundamental to understand
what the Reynolds number tells us about the effects of viscosity.
If we consider the flow field around a 3-D solid body moving in a
still fluid, we use one of its dimension as reference length and we get
a Reynolds number bigger than the threeshold for a non-viscous flow
field, we may say that the viscous effects are negligible compared to
the convection of momentum (pressure) and inertial forces. In fact,
close to the surface of the solid body there is a region in which the
velocity goes to zero because of viscosity, and the reference length to
use in the Reynolds number is the distance from the solid surface.
This leads to the analysis of the boundary layer, which can be ac-
counted for with a set of equations, namely Prandtl equations.

Thermodynamic properties

Let’s assume that the fluid of our interest is continuous, that means
the matter is distributed uniformly all over the field and there are no
empty spaces: The inertial, kinematic and thermo-dynamic properties
of matter are continuous functions of spatial coordinates [3].
This assumption is true if the fluid is enough dense, that is the num-
ber of molecules contained in the volume of the flow-field is suffi-
ciently high. This is expressed in the formula:

ρ = lim
dV→dV0

dm
dV

(8)

where the density ρ
[
Kg/m3

]
is defined as the derivative of mass

m times the volume V which tends to the the smallest volume V0 for
which we can consider the fluid continuous.

A continuous fluid is characterized by density, temperature T [K]
and pressure p

[
N/m2

]
.

Temperature and pressure are two macroscopic properties which mea-
sure microscopic effects, the first one being proportional to the aver-
age kinetic energy of the random miscrospic motions and the latter
being proportional to the force generated by collisions of particles in
the fluid.

Density, temperature and pressure are phenomenologically related,
and the analytical formulation of this relationship, namely the equa-
tion of state, depends upon the fluid of our interest. We can assume
that air is an ideal gas, thus the equation of state is
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p = ρRT (9)

where R = 287.26J/kgK is the gas constant for air and depends on
chemical composition of the fluid.

Following the ideal gases properties, the relationship between en-
ergy and temperature is then

e = cv (T)T (10)

where cv (T) [J/K] is the specific heat at constant volume of the ideal
gas, that is how many Joule of heat we need to increase the tempera-
ture of a gram of substance of one Kelvin at constant volume.

The ratio between specific heat at costant pressure and specific heat
at costant volume is function of the temperature as

γ (T) =
cp

cv
(11)

Mach number

As it has been made for viscosity, the phenomenon of density (or
volume) variations, namely the compressibility, can be expressed with
a non-dimensional number:

M =
Vref

a
(12)

where Vref is the reference velocity, and a is the speed of sound.

Indeed the compressibility, that is the capability of a fluid of reduc-
ing its volume (increasing its density) when pressure is applied to it,
is related to the speed of sound.
The volume V decreases of a quantity ∆V proportional to the initial
volume and the pressure applied, converseley the density ρ increases
of a quantity ∆ρ:

∆V = −acV∆p (13)

∆ρ = acρ∆p (14)

where ac is the compressibility coefficient(conventionally positive).
The sound is the propagation of small density disturbances through
waves, this can be easily experienced making a thin layer of metal
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vibrate and noticing that the sound is generated by pressure waves
that change the density of the fluid in which they move [3].
The speed of sound is obtained through eq. 14 for infinitesimal vol-
umes,

a2 =
∂p
∂ρ

[
m2

s2

]
(15)

when eq. 15 is evaluated for isoentropical variations of pressure,
a is the laplacian speed of sound and it can be substituted in Mach
number.

It has been stated that sound propagates through small pressure
disturbances waves, conversely small pressure disturbances move at
the speed of sound, hence using reference dynamic pressure

pref =
1

2
ρV2ref, eqs. 15 and 12 show that the square of Mach num-

ber is an indicator of the compressibility effects in terms of relative
density variations,

∆ρ =
∆p
a2
' 1
2
ρ

V2ref
a2
⇒ ∆ρ

ρ
' 1
2

M2 (16)

The limit condition of M = 0, obtained when a → ∞, means that the
fluid is incompressible so its density does not vary through the flow
field. In aerodynamics the fluid is considered incompressible when
M� 1, for example if M = 0.3 relative density variations due to com-
pressibility are smaller than 5%.

It is again remarked that the reference velocity should be carefully
chosen and deductions from Mach number can lead to wrong con-
clusions, such as when the reference velocity of a body makes Mach
number smaller than 0.3 , but expansion on its surface lead to much
higher velocity regions of the flow field with relevant compressibility
effects.

General specifications of balance equations

The actual aerodynamic event needs to be interpreted through phys-
ical laws expressed in analytical equations to solve for the requested
quantities. In aerodynamics, we search for a set of equations in which
the kinematic and thermodynamic variables are related and it is pos-
sible to reach for approximated or numerical solutions.
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It is fundamental to shape the domain in which these laws have to
be applied, namely the physical system where the aerodynamic phe-
nomenon takes place.
Unlike typical mechanical problems in which the system is usually
solid, in aerodynamics the volume of the system is fluid and, because
of that, can change its shape in time.

If we apply a logical balance to evaluate the variation in time of
the quantity G in the volume V we can observe that the quantity may
vary either through an exchange across the surface of the volume or
by production or distruction inside the volume.

Variation
in time

External
interaction

Internal
production= +

Figure 4: Logical Balance Equation

The analytical tool that evaluates the variation in time of a general
quantity G between two sides of a surface is the flux, defined analyti-
cally as a vector by the formula:

φG
∼= g+V (17)

where g+ is the density per unit volume of the quantity G and V is
the velocity vector, hence the dimension of a flux is

[
φG

]
=

[G] [L]
[L]3 [t]

(18)

The quantity G in the volume V can be produced or destroyed in
time because of internal causes, and we call this production ġ+ which
has the dimensions of the quantity G per volume, per time unit, or

[
ġ+
]
=

[G]

[L]3 [t]
(19)

We are going to express the fundamental laws in a fixed volume
V, enclosed by the outer surface So through integrals extended to the
finite volume of the domain.

We remark that physical quantities like density, momentum and
energy are costant in the smallest volume for which the continuous
fluid hypothesis is valid, namely the infinitesimal volume dV.

Then we evaluate the total amount of the quantity G in the volume
of our interest as the integral



16 theoretical background

Gt =

∫
V

g+dV (20)

and its variation per time unit is the derivative
dGt

dt
.

Similarly the total production Ġ can be evaluated as

Ġ =

∫
V

ġ+dV (21)

which is positive if the quantity is created, negative if the quantity
is destroyed.

The external exchange of the quantity is taken into account through
the flux φG which is defined on the outer surface So with normal
vector n, and its total flow is

∫
So

(
n ·φG

)
dSo (22)

which is positive if the quantity is going out, negative if the quan-
tity is coming in.

The general global form of a balance equation is then

d

dt

[∫
V

g+dV
]
= −

∫
So

(
n ·φG

)
dSo +

∫
V

ġ+dV (23)

It is useful to express the same balance equation for the infinites-
imal volume, hence we apply the Gauss theorem to obtain the local
formulation of the balance equation, valid under the hypothesis of
continuity of the function inside the integral

∫
V

[
∂g+

∂t
+∇ ·φG − ġ+

]
dV = 0 (24)

The local formulation of the balance equation is

∂g+

∂t
+∇ ·φG = ġ+ (25)

The global (eq.23) and local (eq.25) formulations of the balance
equation have been obtained considering the domain V fixed in an
inertial reference frame, this process is called Eulerian specification of
the flow field [21].

If the balance equations are evaluated following the particles of
fluid and the mass M is fixed, instead of considering the phenomena
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(a) Eulerian Approach (b) Lagrangian Approach

Figure 5: The two different specifications of a flow field

restricted to a fixed volume, we obtain a different specification of the
flow field called Lagrangian [21].

In a Lagrangian flow field the balance equations are evaluated in
a fixed mass M, defined as the domain, which can generally vary
in motion, volume and shape with respect to the inertial reference
frame.

The infinitesimal particles of the domain mass M in which the same
domain is virtually decomposed are defined as dM and their center of
mass is given by the vector R pointing to their position P at the start-
ing time. The configuration of the system varies and at some time t
the particles have moved and a new position vector is defined as r
pointing to the new point p.

The evolution of the system as a function of the starting positions
of the particles R is then expressed by the formula:

r = r (R, t) (26)

and as we stated before the next formula is valid

r = r (R, t0) = R (27)

and the inverse transformation is

R = r (r, t) R (r, t0) = r (28)

These transformations are valid since any region of the mass do-
main doesn’t vanish nor become infinite and there isn’t compenetra-
tion between separate region of the volume (continuity hypothesis).



18 theoretical background

In the lagrangian specification the quantity G is expressed as

G = G (R, t) (29)

Any derivative obtained considering the lagrangian specification
of the system, such as when R remains constant, is called substantial
derivative and is defined as follows

DG
Dt

=

(
∂G
∂t

)
R=const.

(30)

Following the derivatives chain rules and the transformation of
eq.26 the substantial derivative is calculated as

DG
Dt

=

(
∂G
∂t

)
xi=const.

+

3∑
i=1

[(
∂G
∂xi

)
·
(
∂xi
∂t

)]
(31)

or introducing the velocity vector V of the particle defined by the
vector r

DG
Dt

=
∂G
∂t

+ V · ∇G (32)

The general lagrangian balance equation is

d

dt

[∫
Vm(t)

g+dVm

]
= −

∫
So,m(t)

(
n · JG

)
dSo,m +

∫
Vm(t)

ġ+dVm

(33)

where the control volume and surface are now functions of time
(the mass particles are fixed), and the flux is only diffusive since the
domain doesn’t exchange mass with the environment.

When the properties of substantial derivatives are applied and us-
ing the same process that leads to eq.25 we get a new expression for
the local balance equations:

ρ
Dg
Dt

+∇ · JG = ρġ (34)

where the quantity per unit mass g has replaced the the quantity
per unit volume g+.

Mass, momentum and energy equations

Summarizing the basic physical aspects (fluids properties, dynamics
and thermodynamics) of the problem, the following laws lay the foun-
dations of fluid dynamics
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• Conservation of mass

• Momentum equation (Newton’s law)

• Conservation of energy

The Lagrangian formulation (following a particle of fluid), neglect-
ing gravitational effects, is [17]

Dρ

Dt
+ ρ (∇ ·V) = 0 (35)

ρ
DV
Dt

−
(
∇ · τ

)
= 0 (36)

ρ
DE
Dt

+∇ ·
(

J
ter

− τ ·V
)
= 0 (37)

where V is the velocity field, ρ is the density, E is the total energy,
τ is the stress tensor and J

ter
is the internal energy diffusive flow.

The derivatives of density, velocity vector field and total energy are
substantial derivatives, hence they take into account both the diffusive
and convective variation of these quantities.
τ is composed by the pressure tensor and the stress deviator tensor
τ = −pU + τ

t
, the second one being related to friction and the dissi-

pation of momentum.

The approximations are obtained through non-dimensionalization,
introducing into the equations the already defined Reynolds number,
Mach number and Prandtl number Pr = cpµ/λ,

Dρ

Dt
+ ρ (∇ ·V) = 0 (38)

ρ
DV
Dt

+∇ · p =
1

Re∞∇ · τd (39)

ρ
DH
Dt

= (γ− 1)M2∞∂p
∂t

−
1

Re∞
{
∇ ·
[ J
ter

Pr
− (γ− 1)M2∞τd ·V

]}
(40)

Potential flow field and Laplace’s equation

The equation presented above are very complex and their solution,
even by numerical methods, is difficult for many practical applica-
tions. Anyway, large regions of the flow field are often capable of
being modelled with less complex equations, in which small terms
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are neglected .
In this case we are interested in the lowest level of approximation of
Navier-Stokes equation, namely the potential flow field.
If the domain is inviscid 1/Re∞ = 0, the flow doesn’t conduct heat
λ = 0 and Crocco’s theorem ensures vorticity is null, we get the
potential equation, which can be further simplified into the Laplace
equation when compressibility is neglected (M∞ = 0),

∇2Φ = 0 (41)

where V = ∇Φ is the potential scalar function of the velocity vector
field, and the Laplace operator, namely the divergence of the gradient
of a function, is defined as follows

∇2f =
N∑

i=1

∂2f
∂x2i

(42)

The equation 41 is a second order partial differential equation and
its non-trivial solutions are called harmonic functions.

The linearity of Laplace’s equation allows the application of the
superposition principle, namely any linear combination of harmonic
functions is an harmonic function itself or mathematically,

Φ =

N∑
i=1

ciΦi (43)

In Cartesian coordinates the eq.41 becomes

∇2Φ (x, y, z) =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (44)

Boundary conditions

As in any other mathemathical model of a physical phenomena, the
solution to the problem requires additional conditions to be specified
on the borders of the domain of interest, namely the boundary condi-
tions.

In the case of Laplace’s equation applied to a volume, the boundary
conditions must be imposed on every surface enclosing the domain.
In the case of a solid body included in the volume of interest, the
boundary conditions will be specified on the surface of the body as
well.
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As we can notice from the absence of time dependencies in Laplace’s
equation the unsteadiness of the flow field can be taken into account
introducing time functions in the boundary conditions.

Considering an infinite domain, one of the boundary condition will
be specified at infinity, which is the surface where all the disturbances
caused by bodies in the flow field vanish, also known as far field
boundary condition,

Φ (P)→ Φ∞ when P→∞ (45)

where

∂Φ∞
∂x

= U∞ ;
∂Φ∞
∂y

= V∞ ;
∂Φ∞
∂z

= W∞ (46)

The boundary condition on internal boundaries between the do-
main and any body included in the volume of interest models the
physical properties of the interaction between a fluid and a solid.
Then the tangential velocity on the body surface, namely the compo-
nent of the velocity parallel to the surface, is null when the flow field
is viscid as we stated in the viscosity section.
For a potential flow field we cannot assume any variation of the tan-
gential velocity in the proximity of a solid body, so the fluid will slip
on the surface, then the normal component of velocity is imposed on
the surfaces, which can have a known value of mass flow velocity
h(S) on the surface S,

V · n = ∇Φ · n = h(S) on S (47)

If the body is solid and there is no mass flow through the surface
then the normal velocity is null and the fluid flows tangential to the
surface,

V · n = ∇Φ · n = 0 on S (48)

In this type of boundary condition we assign the value of the ve-
locity potential function, namely the velocity gradient, hence we call
it a Neumann’s condition, while when the velocity value is assigned
directly the condition is called a Dirichlet condition.

1.5 basic solutions and singularity elements

The analytical properties of Laplace’s equation and the corresponding
boundary value problem shown in the previous section demonstrated
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that it is still possible to obtain a solution, also called an harmonic
function, with a linear combination of two or more elementary solu-
tions, i. e. the principle of superposition.
These elementary solutions are called singularities since their velocity
inductions becomes singular approaching to their position in the flow
field.
Once their influence, i. e. their induced potential and velocity, at an
arbitrary point is calculated, these quantities replace the unknown
terms in the analytical or numerical boundary integral equation.

The vortex lattice method, and its unsteady extension, both employ
3-D vortex-rings to solve the potential flow around lifting surfaces.

It is necessary to clarify that the numerical solution found in 106

doesn’t directly include vortices, but only sources and doublets, yet
it is possibile to show that doublet elements are equivalent to vortex
elements of one order of polynomial approximation lower.

Polynomial function

A polynomial first order function, that is a solution to Laplace’s equa-
tion, is often employed for the free stream potential, as it models the
constant velocities of undisturbed flow.

Velocity potential is in general

Φ(x, y, z) = U∞x + V∞y + W∞z (49)

and the velocity increment, now called q to avoid confusion with
its component v, is

q = (u, v, w) = ∇Φ = (U∞, V∞, W∞) (50)

Quadrilater doublet

The simplest 3-D elements have a quadrilater geometry with a con-
stant strength singularity.

The quadrilater doublet shown in fig.6 have corners 1, 2, 3, 4 and a
constant strength µ, its potential induction on a point P(x, y, z), which
coordinates are expressed in a local reference frame, is developed
using the point elements distributed on the surface S, obtaining [9]
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Figure 6: Quadrilater doublet and its vortex-ring equivalent (Reproduced
from [9])

Φ(x, y, z) =
−µ

4π

∫
S

zdS[
(x − x0)2 + (y − y0)2 + z2

] 3
2

(51)

or in a simpler fashion,

Φ(x, y, z) =
−µ

4π

∫
S

zdS
r3

(52)

where r =
[
(x − x0)2 + (y − y0)

2 + z2
] 1
2 .

The velocity increment can be obtained through

q = (u, v, w) =

(
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
(53)

hence we get

q =
−µ

4π

∫
S
∇ z

r3
dS =

µ

4π

∫
S

[
i
∂

∂x0
z
r3

+ j
∂

∂y0

z
r3

− k

(
1

r3
−
3z2

r5

)]
dS

(54)

Quadrilater doublet and vortex-ring equivalence

As shown in fig.6, C represents the curve bounding the panel, so we
consider a vortex filament of circulation Γ along C.
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From Biot-Savart law we obtain the velocity increment induced by the
filament as

q =
Γ

4π

∫
C

dl× r
r3

(55)

and for dl = (dx0,dy0) and r = (x − x0, y − y0, z) we get

q =
Γ

4π

∫
C
{i

z
r3
dy0 − j

z
r3
dx0 − k

[
(y − y0)

r3
dx0 −

(x − x0)
r3

dy0

]
}

(56)

Using Stokes’ theorem on eq.56 as in [9] we get

q =
Γ

4π

∫
S

[
i
∂

∂x0
z
r3

+ j
∂

∂y0

z
r3

− k

(
1

r3
−
3z2

r5

)]
dS (57)

Once the differentiation has been performed we get the same veloc-
ity as the doublet panel if Γ = µ.

This simplified derivation of equivalence can be generalized to dou-
blet distributions corresponding to vortex distributions of one order
less plus a vortex-ring whose strength is equal to the edge value of
the doublet distribution [9].

Constant strength vortex line segment

Following Biot-Savart’s law a vortex line segment starting from point
1 and ending to point 2 as shown in fig.7, the velocity at an arbitrary
point P can be obtained from

∆q =
Γ

4π

dl× r
r3

(58)

where ∆q is the increment for the infinitesimal segment on the line
dl, then we get the total induction

q =
Γ

4π

r1 × r2
‖r1 × r2‖2

(r1 − r2) ·
(
r1
r1

−
r2
r2

)
(59)
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Figure 7: Vortex line segment (Reproduced from [9])

Vortex-ring

A vortex-ring is a combination of 4 vortex line segments in a quad-
rangle as shown in fig.8.

Figure 8: Vortex ring (Reproduced from [9])

The velocity induced by a vortex-ring can be calculated as the sum
of the components induced by its 4 sides as follows,

q =

4∑
i=1

qi =

u

v

w

 =

u1
v1
w1

+

u2
v2
w2

+

u3
v3
w3

+

u4
v4
w4

 (60)

where the qi components are calculated through eq.59 for each seg-
ment with the same circulation Γ .
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1.6 vortons formulation

The code implements the possibility to adopt a vortex-particles (vor-
tons) wake model, giving the chance to extend this method to a multi-
body panel method (in fact vortons don’t suffer from intersection
with body panels) and decreasing significantly the time of simula-
tions (every vortex-ring, composed by 4 vortex vertices, is converted
into a single vorton).

Since the vortex-particles employed in a vorton method are a dis-
cretization of the vorticity in the domain we need a theoretical formu-
lation starting from the relationships between vorticity, velocity and
the vector potential.

The vorticity in the domain, ω(r, t), is defined as the curl of the
velocity,

ω(r, t) = ∇× q (61)

The velocity due to the vector potential, Ψ, is

q
Ψ
= ∇×Ψ (62)

Substituting the vector potential relationship into the definition of
vorticity we obtain

∇2Ψ = −ω (63)

that is a vector Poisson equation relating the vector potential to the
vorticity.
As vortex particles represent discretized elements of vorticity in the
flow-field they are subjected to convection with local velocity and
stretching due to the velocity gradients. This vorticity stretching is
obtained recalling the equation of vorticity evolution, derived from
the incompressible Euler equation, that is

Dω

Dt
= ω · ∇Q (64)

where the term on the right hand side represents the vorticity
stretching due to the gradient of the velocity field. A vortex parti-
cle in a 3-D domain is defined by the vector α(x, y, z, t).
In the vorton method, the vorticity is replaced by a discretized set of
vortons, so the vorticity is expressed through the linear combination
of the vorticities represented by the vortons, as follows
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ω =
∑

p

αp(r, t) (65)

while the vector potential given by Poisson’s equation can be deter-
mined through

Ψp(r, t) =
1

4π

∑
p

αp(r, t)
|r− rp|

(66)

where r is the distance from the vorton to the point of evaluation.
A core-function ξψ must be introduced to eliminate the singularity
when r− rp approaches zero, so that if |r− rp| < rσ the vector poten-
tial is not singular.

The velocity field induced by the set of vortons is given by the curl
of the vector potential

∇×Ψp(r, t) =
1

4π

∑
p

(r− rp)

|r− rp|
×αp(r, t) (67)

Therefore the vorton induction decays as
1

r2
and again a core-function

ξQ must be introduced to avoid the singularity when |r− rp|→ 0.

Similarly the gradient of the velocity field used in the stretching
term of vorticity is defined as follows

∇
(
∇×Ψp(r, t)

)
=
1

4π

∑
p

∇

(
(r− rp)

|r− rp|
3
×αp(r, t)

)
(68)

The core function that will be used in this implementation is de-
fined in [5], called high order algebraic smoothing function and success-
fully employed in the methods developed in [11] and [4]. Recall that
this method will suffer from the fact that the particle representation
of vorticity doesn’t guarantee the divergence-free field for long times
of simulations, thus a relaxation scheme should be implemented to
avoid un-physical augmentation of vorticity in the field.

1.7 kutta’s condition

Once the boundary conditions at the free stream and at the surfaces
of the solid bodies included in the flow field have been added to the
analytical problem governed by Laplace’s equation, we must ensure
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that the solution we get is unique as it must resemble the physical
phenomenon.
The uniqueness of the solution for a multiple connected region, i. e.
the case of a 3-dimensional wing shedding a wake, is ensured when
the circulation is fixed by means of a physical condition [9]. Moreover
we assume that the physical condition is then related to the shape of
the solid bodies, as their geometries influence the way the flow ap-
proaches, flows and then leaves their borders [3].
Kutta condition’s applies to aerodynamic bodies, by definition those
with a sharp trailing edge, because the fluid flowing on their surface
would eventually encounter an infinite curvature, hence it would re-
quire an infinite acceleration.
The effect of viscosity decelerate the fluid in the proximities of the
solid surfaces and neutralize the increasing acceleration trend at the
trailing edge.

When the flow field is potential the effects of viscosity is negligible
and the infinite acceleration of the fluid at the trailing edge must be
treated with another condition.
The fluid velocity direction and module are fixed such that it doesn’t
follow the curvature but instead leaves the corner smoothly, i. e. the
velocity field is continue and the module is finite.

The ways to address Kutta’s condition depend on the numerical
method employed in the aerodynamic analysis, but it is common to
fix the amount of circulation around the trailing edge through the
velocity components or directly its value.

1.8 the bernoulli equation

The solution to Laplace’s equation and the related boundary condi-
tions leads to the calculation of the velocity field.
To accomplish the goals of aerodynamic design we are often inter-
ested in the calculation of the pressure field, and finally to the com-
putation of forces on the bodies, hence we need an appropriate ex-
pression obtained from the momentum equation.

From Euler equation, i. e. the inviscid compressible fluid approxi-
mation of momentum equation, we obtain the incompressible approx-
imation,

∂V
∂t

+ V · ∇V = f−
∇p
ρ

(69)

The convective acceleration term is rewritten using the vector iden-
tity,
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V · ∇V = ∇V
2
− V× ζ (70)

where ζ is the vorticity, twice the angular velocity,

ζ ∼= 2ω = ∇×V (71)

then the Euler equation becomes

∂V
∂t

+ V× ζ+∇V2

2
= f−

∇p
ρ

(72)

With the additional hypothesis of irrotational flow and conserva-
tive body force we obtain

∇

(
E +

p
ρ
+

V2

2
+
∂Φ

∂t

)
= 0 (73)

or conversely,

E +
p
ρ
+

V2

2
+
∂Φ

∂t
= C (t) (74)

and if the conservative body force doesn’t influence the motion of
particles in the flow field, that is when the gradient of forces produced
by gravity are negligible, we obtain

p
ρ
+

V2

2
+
∂Φ

∂t
= C (t) (75)

In a potential flow field, as we can notice from eq.75 and eq. 41,
the velocity field(or its potential function) and the pressure field are
the only two unknown variables and they are decoupled, making it
easier to develop numerical methods to obtain these quantities.

Comparing two points in the fluid, the first is arbitrary and the
second is a reference point at infinity that is chosen such that Φ∞ =

const. and V∞ = 0, the pressure p can be calculated from

p∞ − p
ρ

=
V2

2
+
∂Φ

∂t
(76)

and in cartesian coordinates in an inertial reference frame,
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p∞ − p
ρ

=
1

2

[(
∂Φ

∂X

)2
+

(
∂Φ

∂Y

)2
+

(
∂Φ

∂Z

)2]
+
∂Φ

∂t
(77)

in the BRF using the chain rule the time derivative can be expressed
as

∂

∂tinertial
= − [V0 +Ω× r] ·

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
+

∂

∂tbody
(78)

so eq. 77 becomes

p∞ − p
ρ

=
1

2

[(
∂Φ

∂x

)2
+

(
∂Φ

∂y

)2
+

(
∂Φ

∂z

)2]
− (V0 +Ω× r) · ∇Φ+

∂Φ

∂t

(79)

In the case of three-dimensional panel methods the simplest way
to calculate pressure is

pref − p
ρ

=
V2

2
+
∂Φ

∂t
−

vref2

2
(80)

where V is the modulus of the local fluid velocity and vref =

− [V0 +Ω× r] is the reference kinematic velocity.

From eq. 80 we get an expression for the pressure coefficient, that is
a dimensionless quantity which relates the difference of the pressure
at an arbitrary point and static pressure with a reference quantity
called dynamic pressure,

Cp =
p − pref

(1/2) ρvref2
= 1−

V2

vref2
−

2

vref2
∂Φ

∂t
(81)

1.9 panel methods

Laplace’s equation with an appropriate set of boundary conditions
can be solved through numerical methods which employs a general
solution of the potential flow field through Green’s third identity and
its applications to harmonic functions.

In panel methods a field singularities (vortices, doublets and sources),
which inherently satisfy the potential flow field analytical require-
ments, is employed to discretize the body geometries and this pro-
cess leads to a boundary integral equation solved through a linear
algebraic system for the calculation of pressure and forces directly on
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the bodies.

It is remarkable that panel methods are able to model a large num-
ber of physical phenomena and yet they are computationally cheaper
than other numerical method, the calculation of unknown quantities
being restricted to a finite number of control points on the surface of
bodies.

In this section the derivation of the numerical methods known as
panel methods will be developed through the analytical process that
leads to a general solution of the incompressible, potential flow field
equations and the application of the properties of field singularities.

General solution from Green’s third identity

The analytical problem described by Laplace’s equation and the bound-
ary conditions set in the previous sections will be solved using Green’s
identities in a domain shown in fig.9 which allows us to formulate a
solution on the boundaries of the domain [3].

The domain is composed by the volume of interest V bounded
by the outer surface S∞ and enclosing an arbitrary body shedding
a wake surface, delimited by Sb and Sw. This domain can either be
2-dimensional or 3-dimensional.

Figure 9: Domain for Green’s third identity formulation

Green’s second identity is obtained from the divergence’s theorem
as follows
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∫∫
S

Q ·ndS =

∫∫∫
V

∇ ·QdV (82)

and when Q = Φ1∇Φ2−Φ2∇Φ1, where Φ1 and Φ2 are two scalar,
continuous and differentiable functions in V,

∫∫
S

(Φ1∇Φ2 −Φ2∇Φ1 ·n)dS =

∫∫∫
V

(
Φ1∇2Φ2 −Φ2∇2Φ1

)
dV

(83)

We apply Green’s second identity, eq. 83, to the volume of our in-

terest with the functions Φ1 =
1

r
and Φ2 = Φ, where r is the distance

from an arbitrary point in the volume and Φ is the velocity poten-
tial function solution of Laplace’s equation in the volume V, then we
obtain

∫∫
S

(
1

r
∇Φ−Φ∇1

r

)
·ndS =

∫∫∫
V

(
1

r
∇2Φ−Φ∇2 1

r

)
dV (84)

When the volume integral of eq.84 is evaluated outside the bound-
ary S∞ both the laplacian quantities are null (the functions are solu-
tion of Laplace’s equation), hence the surface integral is null as well,

∫∫
S

(
1

r
∇Φ−Φ∇1

r

)
·ndS = 0 when Pext /∈ V (85)

while inside the domain the quantity
1

r
becomes singular when

r→ 0, then we must subtract an infinitesimal sphere of radius ε from
the integration volume V, and rewrite the surface as S+ Sε, to obtain
the expression,

∫∫
S+Sε

(
1

r
∇Φ−Φ∇1

r

)
·ndS = 0 when P ∈ V (86)

The surface integral on the infinitesimal sphere is evaluated intro-
ducing a spherical coordinate system centered in the sphere so that
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the radius versor is opposite to the normal n = −er and n · ∇Φ =

−
∂Φ

∂r
, ∇1

r
= −

1

r2
er and eq. 86 becomes

∫∫
S

(
1

r
∇Φ−Φ∇1

r

)
·ndS −

∫∫
Sε

(
1

r
∂Φ

∂r
+
Φ

r2

)
dS = 0 (87)

which can be further simplified if the potential function Φ and its
derivatives are well-behaved functions in the domain [9], and consid-
ering the infinitesimal surface of the sphere as

∫∫
Sε
dS = 4πε2 when

ε = r,

∫∫
S

(
1

r
∇Φ−Φ∇1

r

)
·ndS −

∫∫
Sε

(
Φ

r2

)
dS = 0 (88)

∫∫
S

(
1

r
∇Φ−Φ∇1

r

)
·ndS − 4π Φ(P) = 0 (89)

and finally,

Φ(P) =
1

4π

∫∫
S

(
1

r
∇Φ−Φ∇1

r

)
·ndS (90)

Eq. 90 is Green’s Third Identity when the two potential functions
Φ1 and Φ2 are both harmonic, and it is remarkable as it can be used
to evaluate the potential function Φ(P) at any point in the volume V,

given the value of the potential Φ and its normal derivative
∂Φ

∂n
on

the surface of the boundary S.

To obtain an expression that includes the contribution of every sur-
face of the domain we must evaluate first the potential in the body
volume, the internal potential, which is outside the volume V and
similarly to eq.85,

∫∫
Sb

(
1

r
∇Φi −Φi∇

1

r

)
·ndS = 0 (91)

and the complete expression for the potential becomes
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Φ(P) =
1

4π

∫∫
Sb

[
1

r
∇(Φ−Φi) − (Φ−Φi)∇

1

r

]
·ndS +

+
1

4π

∫∫
S∞+Sw

(
1

r
∇Φ−Φ∇1

r

)
·ndS

(92)

and if we consider the potential function at∞ as a known function

and the wake surface as a thin discontinuity such as the quantity
∂Φ

∂n
is continue and the value of the potential is the difference between
the upper border and the lower border we obtain

Φ(P) =
1

4π

∫∫
Sb

[
1

r
∇(Φ−Φi) − (Φ−Φi)∇

1

r

]
·ndS +

−
1

4π

∫∫
Sw

[
∇(Φu −Φl)

1

r

]
·ndS +

+ Φ∞(P)

(93)

General solution in terms of doublets and sources distributions

Eq.93 can be rewritten in terms of doublets and sources singularities,
once we have introduced the following quantities,

− µ = Φ−Φi (94)

− σ =
∂Φ

∂n
−
∂Φi
∂n

(95)

where µ is the doublet element intensity and σ is the source el-
ement intensity and the minus sign is due to the direction of the
normals on the boundary surfaces, so we get

Φ(P) = −
1

4π

∫∫
Sb

[
σ

(
1

r

)
− µn · ∇

(
1

r

)]
dS +

+
1

4π

∫∫
Sw

[
µn · ∇

(
1

r

)]
dS +

+ Φ∞(P)

(96)
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and if we replace n · ∇ =
∂

∂n
we get

Φ(P) = −
1

4π

∫∫
Sb

[
σ

(
1

r

)
− µ

∂

∂n

(
1

r

)]
dS +

+
1

4π

∫∫
Sw

[
µ
∂

∂n

(
1

r

)]
dS +

+ Φ∞(P)

(97)

which is the equation that allows us to calculate the velocity poten-
tial at arbitrary points given the sources and doublet distribution on
the boundaries.
We notice that the potential of sources and doublets will vanish when
r → ∞, hence it will inherently fulfill the boundary conditions at in-
finity, but even when the same set of boundary conditions are given
the choice of the distribution is not unique and we need further phys-
ical considerations to find an appropriate solution for arbitrary ge-
ometries.

Numerical solution

In this section the derivation of a unique distribution of singularities
for the analytical solution of eq.97 is shown for the panel method
known as vortex lattice method.
We need to address the physical properties of the flow field of our
interest.
First the boundary condition of zero flow normal to the surfaces
known as Neumann’s condition will be carried out.
Then the right choice of singularities and their distribution will be
made.
Finally, as we have learnt from the Kutta’s condition, the amount of
circulation is directly linked to the properties of the flow field and the
geometry of the bodies (solid bodies and wakes) therefore it requires
to be fixed [9].

Based on eq.97 we have the following expression for the total veloc-
ity potential, now called Φ∗,

Φ∗ (x, y, z) =
1

4π

∫
SB+SW

µ
∂

∂n

(
1

r

)
dS −

1

4π

∫
SB
σ

(
1

r

)
dS +Φ∞

(98)
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then we rewrite the boundary condition of eq.48 replacing the total
velocity potential Φ∗ as the sum of perturbation potential Φ and free
stream velocity potential Φ∞,

∇(Φ+Φ∞) · n = 0 on S (99)

and the condition at the outer boundaries of the domain, that is
inherently fulfilled by the singularities used in this context, becomes,

∇Φ (P)→ 0 when P→∞ (100)

We use the velocity field as expressed below to met the condition
of eq.99,

∇Φ∗ (x, y, z) =
1

4π

∫
SB+SW

µ ∇
[
∂

∂n

(
1

r

)]
dS −

1

4π

∫
SB
σ ∇

(
1

r

)
dS +∇Φ∞

(101)

then we obtain,

{
1

4π

∫
SB+SW

µ ∇
[
∂

∂n

(
1

r

)]
dS −

1

4π

∫
SB
σ ∇

(
1

r

)
dS +∇Φ∞

}
·n = 0

(102)

This is the boundary integral equation needed to discretize the so-
lution in a finite number of points called collocation points, and so to
turn the analytical problem into a numerical one, that can be solved
through an algebraic system in terms of the unknown singularities.
Finally we need to clarify the wake properties and specify how singu-
larities will be employed in the case of our interest.

Wake properties

An appropriate wake surface model is not only necessary to address
the circulation problem and Kutta’s condition but also strongly re-
lated to the characteristics of the flow field and the geometry of the
bodies in the domain.

A simple model for a wake surface is developed when the body of
our interest is a lifting wing discretized with one bound vortex line
with the strength Γ as shown in fig.10, which according to Helmholtz
theorems,

∂Γx

∂x
=
∂Γy

∂y
(103)
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Figure 10: Lifting surface modelled by a single vortex line (Reproduced from
[9])

which implies that the vortex line has constant stregth and requires
to be continued beyond the wing.
The bound circulation is then calculated as follows,

Γ =

∫2
1

v · dl (104)

where v is the velocity field in the domain, showing that a discon-
tinuity in the velocity potential must exist near the trailing edge.

This brief considerations show that any physical condition, required
for the uniqueness of the solution, has to be addressed in relation to
a wake model that will fix the strength and the shape according to it.

Wake strength and shape

As regards the strength, the Kutta’s condition implies that the amount
of circulation is fixed at the trailing edge to make the fluid flow
smoothly.

The shape of the wake will be treated accordingly to the fact that
the wake panels can’t sustain any load unlike the body panels, since
they are not solid surfaces.
Assuming that the wake is modelled by vortex line segments with a
circulation vector Γ and following Kutta-Joukowski theorem the force
F generated by circulation is given by

F = ρv× Γ (105)

where v is the local fluid velocity, hence assuming Γ 6= 0 the force
will be null if the direction of the vortex line segments are parallel to
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the local fluid velocity, v || Γ .

Reduction to a set of linear algebraic equations

Once the choice of singularity elements and a wake model has been
made, the bodies and the wake are discretized into panels, and the
boundary condition of eq.102 can be applied to each of these elements
on their collocation points.

Figure 11: Example of discretization of a wing and a wake model (Repro-
duced from [9])

Assuming N collocation points for a discretized body and Nw for
the wake as shown in fig.11, eq.102 is rewritten as follows,

{
N∑

k=1

1

4π

∫
Body panel

µ ∇
[
∂

∂n

(
1

r

)]
dS +

+

Nw∑
l=1

1

4π

∫
Wake panel

µ ∇
[
∂

∂n

(
1

r

)]
dS +

−

N∑
k=1

1

4π

∫
Body panel

σ ∇
(
1

r

)
dS +∇Φ∞

}
·n = 0

(106)

which means that for each collocation point P on our solid body(recall
that Neumann’s condition is applied to the body surface Sb), eq.106

takes account of the influence of each body panel k and each wake
panel l through surface integrals.

Once the integrals are evalued numerically or analytically, if the
doublets and the sources have constant strength, we obtain a numeri-
cal expression of Neumann’s condition,
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N∑
k=1

Ckµk +

NW∑
l=1

Clµl +

N∑
k=1

Bkσk = Ak for each point P (107)

where Ck and Bk depend on the geometrical properties and shape
of the body panels and the wake model, while Ak are related to the
free stream potential and it’s assumed that they are known quantities.

At this point the algebraic system resulting from eq.107 leads to
the calculation of the unknown doublets strength µk once we have
expressed the wake doublets µl in terms of the body singularities(by
using a physical condition) and fixed the sources strength σk.

Finally we obtain a system of N equations with the N unkwown µk
in the following form,


a11, a12, ..., a1N

a21, a22, ..., a2N
...

...
...

aN1, aN2, ..., aNN




µ1

µ2
...

µN

 =


RHS1

RHS2
...

RHSN

 (108)

where the RHS’s contain the information of zero normal flow of
Neumann’s condition and the matrix on the left side is often called
aerodynamic influence matrix.

1.10 extension to unsteady incompressible potential flow

The goal of this section is to address the modifications required by
the numerical methods known as panel methods to take account of
the unsteadiness in the incompressible potential flow fields.

First it should be reminded that Laplace’s equation doesn’t contain
time-dependent derivatives, hence the unsteadiness of the flow field
will be accounted for in the boundary conditions and in a more com-
plex wake model.
Then the unsteady specification of the Bernoulli equation will be used
to include the unsteady loads in the aerodynamic analysis.

It is assumed that the unsteady motion is prescribed and aerody-
namic equations are decoupled from the equations of motion which
determine the path and attitude of the body submerged in the fluid.
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Unsteady solution

We are interested in the modifications of Neumann’s boundary con-
dition when the motion is unsteady, in the case of our interest a body
submerged in a stationary fluid follows a prescribed unsteady motion
path.
As shown in fig.12 the choice between the body reference frame (BRF)
and the inertial reference frame (IRF) becomes very important to have
a clear and simple expression of the velocity components.

Figure 12: Choice of reference frames for an unsteady motion (Reproduced
from [9])

Assuming that BRF origin moves with a velocity V0, its angular
velocity is Ω = (p, q, r), the distance from the origin of the IRF is
r and an additional relative velocity vrel(x, y, z) with respect to the
origin of the BRF is defined, we get an expression for the kinematic
velocity v of the undisturbed fluid due to the BRF points motion as
follows,

v = − [V0 +Ω× r + vrel] (109)

and eq.109 can be expressed in both IRF coordinates (X, Y, Z) or
BRF coordinates (x, y, z) once the transformation function between f
between these reference frames has been established,

x

y

z

 = f (X0, Y0, Z0,φ, θ,ψ)

X

Y

Z

 (110)
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where the transformation takes account of the translations (X −

X0), (Y−Y0), (Z−Z0) and attitude in terms of Euler’s angles (φ, θ,ψ).

Finally we get an identical expression for Laplace’s equation and
the free stream condition, and a new Neumann’s condition expres-
sion that takes account of the BRF motion,

∇Φ2 = 0 (111)

[∇Φ− (V0 +Ω× r + vrel)] · n = 0 on S (112)

∇Φ→ 0 when R → ∞ (113)

The absence of time derivatives let us apply the steady-state solu-
tion techniques in the same fashion once the time varying motion is
accounted for in the momentary boundary conditions [9].

We get an unsteady expression of the numerical solution suitable
for panel methods, i. e. eq.102 found in the previous section, adding
the BRF kinematic velocity,

{
1

4π

∫
SB+SW

µ ∇
[
∂

∂n

(
1

r

)]
dS −

1

4π

∫
SB
σ ∇

(
1

r

)
dS − V0 − vrel −Ω× r

}
·n = 0

(114)

In this way we get a different algebraic system, eq.107, for each mo-
mentary boundary condition.

Unsteady Kutta’s condition

Similarly to the steady case a physical condition should be developed
to fix the amount of circulation at the trailing edge.
A simple way to address the unsteadiness of the wake shape is to
extend the steady Kutta condition at every time step included in the
calculation.

The parameters affecting the status of the extension of the steady
Kutta’s condition are mainly the reducedfrequency, k = ωL/2V,
where ω is a reference angular velocity, L is a reference length and V
is a reference velocity, and the amplitude of the disturbances in terms
of body displacement at the trailing edge and the corresponding ve-
locities[9].

It has been demonstrated by comparisons with experiments that for
attached flows in which the reduced frequency is less than 1, and the
displacements are small, i. e. one order less than the reference length,
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Figure 13: Example of the application of Kutta’s condition in an unsteady
vortex lattice method (Reproduced from [9])

the application of the steady Kutta condition leads to an appropri-
ate calculations of aerodynamic loads, even if a certain lag could be
present.

An example of the application of steady Kutta’s condition in an
unsteady vortex lattice method through the setting of the amount of
circulation Γwake = ΓT .E. of the first row of wake panels is given in
fig.13.

Forces evaluation

The instantaneous unsteady Bernoulli equation should be applied to
calculate the pressure on the body, to take account of the unsteady
loads generated by an accelerating body, as we already found in eq.80,

pref − p
ρ

=
V2

2
+
∂Φ

∂t
−

vref2

2
(115)

where V and p are the local fluid velocity and pressure and vref =
V0 +Ω× r is the reference velocity due to the motion of the body.

1.11 aerodynamic loads

Polars

A fundamental role in aerodynamic design is played by lift, drag and
moments coefficients as we have already stated.
The polars are (CD,CL), (CM,CL) curves which describe global aero-
dynamic behaviour of the aircraft and can be used as a basis for fur-
ther calculations, because of their immediate visual impact.
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However they are calculated varying the flight parameters, and can
give a wide knowledge of the aircraft properties in real flight con-
ditions, for example one can consider different Mach and Reynolds
numbers which are related to height, aircraft speed and dimensions.
Other factors affecting the polars are the turbulence ratio (Tu), which
measures the kinetic energy content associated to turbulence com-
pared to that associated to freestream velocity, and aircraft configura-
tion, such as deployment of control devices, spoilers and air-brakers.
The amount of different polars necessary to accomplish the goals of
aerodynamic design depends on the complexity of the aircraft and
flight conditions.

It is also important to notice that aerodynamic data, and espe-
cially polars, are not only obtained through computational or analyt-
ical methods but also calculated from experimental data taken inside
wind tunnels and flight-test campaigns.

Wing Loads

The wings are the structural parts of the aircraft that generate the
biggest amount of lift, there are usually three kinds of wings on a
conventional aircraft, the wing itself, the horizontal tail wing and the
vertical tail wing.
Other structural parts of the aircraft such as fuselage and engines
produce lift too, but the amount is often negligible compared to that
of the wings and it is only considered during detailed aerodynamic
design.
We can briefly synthetize the process of aerodynamic force genera-
tion as a normal stress field over the surface of the wing (mainly due
to pressure) and a tangential one, which are different from the static
ones: the integration of all the stresses over the entire surface gives
the aerodynamic force.

When the aircraft is flying at costant altitude the global variation
of momentum has a downward component, so the reaction is an up-
ward force on the wing, namely the lift.
The lifting force is bigger than the friction tangential force of approx-
imately one order of magnitude during most of flight conditions,
therefore the lift represents well the whole aerodynamic force, un-
less we are dealing with particular flight maneuvers (high angles of
attack).

Moreover the fact that wings are usually thin surfaces tells us that

• pressure stresses are mainly perpendicular to the direction of
aircraft velocity
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• tangential stresses are mainly oriented towards the direction of
aircraft velocity

• hence the lift is mainly due to pressure stress field

The computation of lift on a lifting surface, that is almost equal to
the whole aerodynamic force for aircraft in cruise flight, is carried out
integrating the z component of the pressure difference ∆p between the
top and bottom part of the surface extended to the entire surface

L ∼=

∫∫
S
∆p (x, y) dxdy (116)

∆p (x, y) is the pressure distribution over the lifting surface defined
on points P(x,y,0) of the wing in plan-view.

Airfoil Loads

If we introduce an infinite wing which has no spanwise ending, we
can section it with planes parallel to (x, z) and call these sections
"airfoils". The airfoil x-wise dimension is the length known as "chord
line" c and it is usually defined as the length between the foremost
and the rearest point of the airfoil [17].

Similarly to the wing load, we can assume that every airfoil gen-
erates a certain amount of lift (per span unit) l = l(y) equals to the
chord-wise integration of the pressure distribution

l ∼= l (y) ∼=

∫
c(y)

∆p (x, y) dx (117)

The lift per unit span can be also non-dimensionalized as

Cl (y) =
l

1
2ρ∞V2∞c (y)

(118)

(119)

and this lead to the introduction of vorticity or non-dimensional
airfoil load γ (x),

Cl
∼=

∫1
0

∆p
1
2ρ∞V2∞ d

(x
c

)
=

∫1
0

γd
(x

c

)
(120)

γ
(x

c

)
=

∆p
1
2ρ∞V2∞ (121)
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which can be seen as the quantity that has to be integrated over the
non-dimensional chord-line to obtain the lift coefficient per unit-span.

Span-wise Loads

Total lift can be evaluated from the equation:

L =

∫+ b
2

− b
2

l (ydy) (122)

and from Eq. 118 we obtain

L =

∫+ b
2

− b
2

1

2
ρ∞V2∞Cl (y) c (y) dy =

1

2
ρ∞V2∞b2

∫1
−1

Cl (y) c (y)
2b

d

(
y
b
2

)
(123)

And introducing the non-dimensional lift coefficient,

CL =
L

1
2ρ∞V2∞S

(124)

CL =
b2

S

∫1
−1

Clc
2b

d

(
y
b
2

)
=A

∫1
−1

Clc
2b

d (η) =A
∫1
−1
γ (η) dη

(125)

Where γ is the non-dimensional wing load, function of the non-
dimensionalized span-wise coordinate η, andA is the aspect ratio of
the wing.

The non-dimensional wing load is the most important quantity in
aerodynamic analyses of lifting surfaces. Knowing its span-wise dis-
tribution allows to calculate many features of the aerodynamic be-
haviour of a lifting surface.
It gives the lift distribution over the wing, namely how loaded the η
coordinate of the wing is, and it can be seen that the lift coefficient
Cl and the chord length c contribute in the same proportional way to
the load.

Some of the remarkable consequences of a good span-wise lift dis-
tribution are

• low induced drag

• good stall behaviour
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• good load distribution on the wing structures, hence lower weights

• optimization of the configuration and integration of wing, fuse-
lage and control surfaces

It has to be reminded that the wing load could be symmetrical or
have a non-symmetrical distribution, depending on the shape of the
wing and its airfoils.



2
D E V E L O P M E N T A N D I M P L E M E N TAT I O N

The development and implementation of an unsteady vortex lattice
method will be addressed following the standard sequence toward
the construction of numerical solution for potential flows.

First the type of singularity elements, the boundary conditions
and the wake model have to be considered based on the desired ca-
pability of the numerical solution to model the physical phenomenon
but also on the efficiency and speed of the method. Then the process
can advance to the following steps.

1. The selection of surface singularity elements, their distribu-
tions, order and the influence routine to calculate their velocity
inductions ∆u,∆v,∆w and if necessary the potential ∆Φ.

2. The discretization of geometry and grid generation, that is the
numerical model of an actual body submerged in the potential
flow field, made by the singularities chosen before. The shape,
amount and location of the singularities and their collocation
points influences the convergence to a certain solution.

3. Influence coefficients will be calculated based on the algebraic
equations obtained through the reduction of the boundary con-
ditions. As stated in the first chapter, the influence coefficients
will be gathered in an aerodynamic influence matrix or AIC.

4. The RHS of the matrix equations will be established based on
the relative motion between the body and the fluid when the
Neumann’s condition is applied.

5. Once the known quantities (AIC, RHS) are calculated, the set of
equations will be solved by standard matrix techniques.

6. The solution of the set of equations leads to the singularities
strength and the velocity field, then the desired quantities such
as pressures, loads and aerodynamic coefficients can be com-
puted through the Bernoulli equation or via physical derivation
(e. g. Kutta-Joukowski’s theorem).

47
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2.1 development

A steady vortex lattice method will be developed in this section, then
the modifications required to extend the method to unsteady mo-
tion will be addressed. Indeed, as we stated in the previous chapter,
the steady numerical solution can be applied to unsteady cases with
the addition of a time-dependent boundary condition, an appropriate
wake model and the unsteady loads.
A short overview of the main steps is shown in the diagram below.

Start

Input Data· Geometry
· Motion

Generation of Lattice

Calculation of
AIC Matrix

Calculation of
Kinematics

ti = ti−1 + ∆t

Wake Shedding

Calculation of
RHS Vector

Solution of
the System

Calculation of
Aerodynamic loads

·L(ti)
·Di(ti)

Wake Kinematics

ti = tend

End

yes

no

Similar in steady and unsteady VL methods

Unsteady VL method only

Some modifications for the unsteady VL method

Unsteady VL method only

Figure 14: Steady and unsteady vortex lattice methods overview
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2.1.1 Steady Vortex Lattice Method

The steady vortex lattice method employs the vortex-ring singulari-
ties to model the surface of a body submerged into a potential flow
field to satisfy Neumann’s boundary condition [9], [17], [14]. The sub-
stitution of vortex singularities into the expression of Neumann’s con-
dition of eq.97 is valid due to the equivalence of vortex distributions
to doublets distribution of one order higher, demonstrated in the pre-
vious chapter.
We are interested in the aerodynamics of an arbitrary shape thin
lifting-surface, that we will generally call wing, hence the choice of
a vortex distribution decreases the programming effort and it is suit-
able as long as the effects of thickness on aerodynamic loads can be
neglected.

Symmetry properties

When the wing is symmetrical and we limit our analysis to mo-
tions that generate symmetrical loads, the simplicity and the com-
putational cost can be improved through the method of images [9].

i,j

i,j

Figure 15: Image of the right-hand side of a symmetric wing model (Repro-
duced from [9] with modifications)

As shown in fig.15, only the right-hand side of a symmetric wing
is modelled by the vortex-rings singularities and due to the fact that
the corresponding singularity will have the same strength Γi,j, the in-
fluence of the left-hand side of the wing at an arbitrary point P(x, y, z)
will be included in the calculations evaluating the influence of the i,j
panel at point P (x, -y, z) and changing the sign of the v component.
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When the inductions is evaluated through a routine func_induction,
function of the point P, the singularity index i, j and strength, the ve-
locity induced by the right-hand and left-hand sides corresponding
elements at point P are

(uR, vR, wR) = func_induction (x, y, z, i, j, Γi, j) (126)

(uL, vL, wL) = func_induction (x, −y, z, i, j, Γi, j) (127)

and the total induction is

(u, v, w) = (uR, vR, wR) + (uL, −vL, wL) (128)

This example shows that by applying the method of images when
we evaluate the velocity induction at an arbitrary point P, we only
change the y value of point P and correct the v component to take ac-
count of the left-hand side of the model, hence we reduce the number
of calculations of any influence coefficient by half.

Singularity elements

The singularities employed in the current method are vortex-rings.
The vortex-ring is a quadrangle with a corresponding strength Γ de-
fined according to the right-hand rule as in fig.16, namely its circula-
tion, that for Kelvin’s theorem doesn’t change along the perimeter. A
normal vector n is defined in the direction of the upper surface of the
wing.
The vortex-rings will form an array or lattice, over the wing, once the
discretization has been established, with i and j as indexes.

The velocity induced by a vortex-ring can be calculated as the sum
of the inductions of the 4 vortex-lines, shown in fig.16, as in eq.59.

First we calculate the induction for each side k of the i, j vortex-ring,

(uk, vk, wk) =
Γi, j

4π

r1,k × r2,k

‖r1,k × r2,k‖2
(r1,k − r2,k) ·

(
r1,k

r1,k
−
r2,k

r2,k

)
(129)

where r1,k and r2,k are the distances from the point P(x, y, z) to the
corners of the vortex-line segments, defined as follows,

r1,k =
[
(x − x1,k), (y − y1,k), (z − z1,k)

]
(130)

r2,k =
[
(x − x2,k), (y − y2,k), (z − z2,k)

]
(131)
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P (x, y, z)

i, j

k

r1

r2

Figure 16: Example of a vortex-ring (Reproduced from [9] with modifica-
tions)

so the cross product r1,k × r2,k becomes

r1,k × r2,k =

 (y − y1,k) · (z − z2,k) − (z − z1,k) · (y − y2,k)

−(x − x1,k) · (z − z2,k) + (z − z1,k) · (x − x2,k)

(x − x1,k) · (y − y2,k) − (y − y1,k) · (x − x2,k)

 (132)

(133)

and the dot products (r1,k − r2,k) · r1,k and (r1,k − r2,k) · r2,k

(r1,k − r2,k) · r1,k = (x2,k − x1,k)(x − x1,k) + (y2,k − y1,k)(y − y1,k)+

+ (z2,k − z1,k)(z − z1,k)

(134)

(r1,k − r2,k) · r2,k = (x2,k − x1,k)(x − x2,k) + (y2,k − y1,k)(y − y2,k)+

+ (z2,k − z1,k)(z − z2,k)

(135)

then we can calculate the velocity components,

uk

vk

wk

 =

K (r1,k × r2,k)x

K (r1,k × r2,k)y

K (r1,k × r2,k)z

 (136)

where

K =
Γi, j

4π ‖r1,k × r2,k‖2

[
(r1,k − r2,k) · r1,k

r1,k
−

(r1,k − r2,k) · r2,k

r2,k

]
(137)
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finally we obtain the total induction of the i, j vortex-ring as a sum
of the inductions of the 4 sides,

(u, v, w) =

4∑
k=1

(uk, vk, wk) (138)

These calculations can be implemented in a routine (‘func_voring’)
which will be a function of the point P(x, y, z) in which we are calcu-
lating the induction, the 4 corner points of the vortex-ring (indexed
and defined by the couple (i, j)) and its circulation Γi, j, as follows,

(u, v, w) = func_voring (x, y, z, i, j, Γi, j)

When only the velocity components induced by the trailing vortices
are needed the routine to calculate the induction should implement
the following expression,

(u, v, w)∗ = (u, v, w)TRAIL.VORT.1 + (u, v, w)TRAIL.VORT.2 (139)

Figure 17: Example of trailing vortex segments (Reproduced from [9])

Grid generation

The leading segment of the vortex-rings is placed at 1/4 of the wing
panel chord-wise length to ensure that the corresponding collocation
points (CPs) are at 3/4 to satisfy the aerodynamic properties of the
Pistolesi’s point (neutral rear point) [17], [9]. The CPs are placed at
the span-wise and chord-wise mid-point of the vortex-rings. Then
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the normal vector n is defined as shown in fig.18 and calculated as
follows,

ni,j =
Ai,j ×Bi,j

‖Ai,j ×Bi,j‖
(140)

where Ai,j and Bi,j are two vectors defining the panel opposite cor-
ners.

i,j

i,j

i,j

Figure 18: Definition of the vortex-ring normal

A positive Γ is defined through the right-hand rule. When comput-
ing pressure loads, recall that the local circulation is different from the
circulation of the vortex-rings, being equal to the difference Γi − Γi−1.
Also the Kutta condition is satisfied when the circulation at the trail-
ing edge is canceled, hence a row of vortex-rings wake panels will be
shed and their strengths will be equal to those of the last row of wing
panels ΓT .E. = Γwake.

For the right-hand side semi-wing of fig.19 the number of chord-
wise divisions is M = 4 and the span-wise divisions is N = 4, inves-
tigations on the influence of the discretization on the quality of the
aerodynamic analyses will be carried out in the next chapter.

Influence coefficients

At this point the aerodynamic influence matrix (AIM) must be filled
with the aerodynamic influence coefficients (AIC), namely the veloc-
ity inductions on each collocation point when Γ = 1 for each bound
vortex-ring. From eq.106, when the vortex-rings are the only singu-
larities in the flow-field, we obtain the following expression for the
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y

z

bound
a i e

ng T.E.

free wake vortices

1,1

1/4 panel chord

4,1

i

Γ

Figure 19: Right-hand side semi-wing vortex-rings arrangement
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Neumann condition of no normal flow applied to the first collocation
point,

[(u, v, w)11Γ1 + (u, v, w)12Γ2 + · · ·+ (u, v, w)1mΓm + (U∞, V∞, W∞)] ·n1 = 0
(141)

where the total number of vortex-rings in the flow field is m =

M×N and the strengths Γ are unknown.
The discretized form of eq.106 is

a11Γ1 + a12Γ2 + · · ·+ a1mΓm = Q∞ ·n1
a21Γ1 + a22Γ2 + · · ·+ a2mΓm = Q∞ ·n2

...
...

am1Γ1 + am2Γ2 + · · ·+ ammΓm = Q∞ ·nm

(142)

hence the influence coefficients are defined as

aK, L = (u, v, w)L, L ·nK (143)

where K and L are the loop counters of the scanning procedures
defined in this section.

Figure 20: Collocation points scanning procedure (Reproduced from [9])

A scanning procedure, with K as sequential counter from 1 to M×
N, takes each collocation point, starting from the first CP(x, y, z), K =
1, of the first vortex-ring (i=1, j=1) to calculate the self-induction and
the induction of the corresponding image on the left-hand side, as
follows,
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(uR, vR, wR)11 = func_voring (x, y, z, i = 1, j = 1, Γ = 1.0)

(uL, vL, wL)11 = func_voring (x, −y, z, i = 1, j = 1, Γ = 1.0)

(u, v, w)11 = (uR, vR, wR)11 + (uL, −vL, wL)11

where the subscript ()11 represents the influence of the first vortex
at the first collocation point, and both counters vary from 1 to M×N.
Finally the influence coefficient a11 is

a11 = (u, v, w)11 ·n1 (144)

Another nested scanning procedure is needed to calculate the in-
ductions of each vortex-ring of the wing surface, with a counter L =

1 : M×N.
The two loops fill the matrix of eq.145,

[AIM] =


a11, ..., a1m

... aKL,
...

am,1, ..., amm

 (145)

The influence coefficients for the induced downwash, obtained through
the trailing vortex segments, are calculated as follows,

b11 = (u, v, w)∗11 ·n1 (146)

where (u, v, w)∗11 takes account of the trailing vortices induction.

At this point we need to clarify the influence of the wake model
in the steady vortex lattice method, because we need to include the
inductions of the wake panels in the calculations.

2.1.1.1 Wake model and influence coefficients

We fulfill the Kutta condition at the trailing edge by fixing the same
circulation ΓT .E. = Γwake for the last row of wing panels and the cor-
responding wake panels.
The wake panels are defined as shown in fig.21, the first side lays
on the trailing edge and the corner points correspond to those of the
wing panels, while the opposite side should be as far as possible [9],
[14].
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ΓT.E.

Γwake

Figure 21: Kutta’s condition for the steady wake model (Reproduced from
[9] with modifications)

The velocity induction of the wake panels is taken into account
every time the scanning procedure for the bound vortex-rings reaches
the last row of wing panels, that is when i = M or L = m, and for the
first CP ( j = 1 ), it is calculated as follows,

(uR, vR, wR)1mW = func_voring (x, y, z, i = M + 1, j = 1, Γ = 1.0)

(uL, vL, wL)1mW = func_voring (x, −y, z, i = M + 1, j = 1, Γ = 1.0)

(u, v, w)1mW = (uR, vR, wR)1mW + (uL, −vL, wL)1mW

where i = M+ 1 is considered to be the counter for the wake vortex-
ring elements.

Finally we obtain the influence coefficient with the wake induction,

a1m = [(u, v, w)1m + (u, v, w)1mW ] ·n1 (147)

RHS

The RHS vector of eq.142 is computed scanning the M×N collocation
points,

RHSK = −Q∞ ·nK (148)

Solver

Once the AIM and the RHS vector are computed, the algebraic set of
equations can be solved, and it leads to the computation of the un-
known strength ΓK of the bound vortex-rings.
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The set of equation is


a11, a12, ..., a1m

a21, a22, ..., a2m
...

...
...

am1, am2, ..., amm




Γ1

Γ2
...

Γm

 =


RHS1

RHS2
...

RHSm

 (149)

and it needs a matrix inversion(of order m) to be solved.

Pressure and loads

Once the Γi,j have been calculated, the fastest way to calculate the total
lift generated by the wing is to apply the Kutta-Joukowski theorem
to each bound vortex segment [9].
So the increment of lift per vortex segment is

∆Li, j = ρV∞Γi, j∆yi, j, when i = 1 (150)

∆Li, j = ρV∞(Γi, j − Γi−1, j)∆yi, j, when i > 1 (151)

and the total lift and the corresponding lift coefficient are

L = 2×
M∑

i=1

N∑
j=1

∆Li, j (152)

CL =
L

1
2V2∞Sref

(153)

The pressure on every panel is

∆pi, j =
∆Li, j

∆Si, j
(154)

Similarly to the thin-lifting surface theory, and with its limitations,
the drag is calculated through the downwash of the trailing vortex
segments, solving the following set of equations,


wind,1

wind,2
...

wind,m

 =


b11, b12, ..., b1m

b21, b22, ..., b2m
...

...
...

bm1, bm2, ..., bmm




Γ1

Γ2
...

Γm

 (155)

so the drag increments per panel are
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∆Di, j = −ρwi, jΓi, j∆yi, j when i = 1 (156)

∆Di, j = −ρwi, j(Γi, j − Γi−1, j)∆yi, j when i > 1 (157)

and the total drag and the drag coefficient are

D = 2×
M∑

i=1

N∑
j=1

∆Di, j (158)

CD =
D

1
2V2∞Sref

(159)

2.1.2 Unsteady Vortex Lattice Method

The following method is based on the steady vortex lattice method
solution with the modifications needed to treat unsteady motion.
The wing and the wake are modelled by the same vortex-ring ele-
ments that we used in the steady-state method. The solution is now
based on a time-stepping technique, since we need to update the
boundary condition (i. e. the solution of the set of equations 149) for
each time step included in the calculation. We assume a prescribed
kinematics time history of the wing, between the starting time t = 0 to
an arbitrary final time t = tfin. We also assume that the wing standed
still before the first time step t = ∆t and only the m = M×N bound
vortex-rings are present.
A solution to the system 149 doesn’t require any additional condition
since we apply the boundary condition on the corresponding m col-
location points to calculate a vector of m strengths Γt (the physical
condition is the Kelvin condition and it is inherently satisfied by the
geometry of the vortex rings).
A wake model has to be implemented during the second time step
t = 2∆t, as the wing moves on its flight path and a row of wake
vortex-rings is shed at the trailing edge, adding N Γwake new un-
known strengths. In the case of our interest the shedding procedure
assing the strength Γwake = ΓT .E.,t−1, that is the steady Kutta con-
dition extension to unsteady motion. The system 149 has still m un-
known strengths Γt and the velocity induction of the N wake vortex-
rings has to be calculated.
The scheme of the first two time-steps is shown in fig.22.

This time-stepping technique can be applied until the final time has
been reached, and at each time step the wake can be moved according
to the velocity induced on the corner points of the wake vortex-rings
introducing a wake roll-up routine.
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Figure 22: Unsteady vortex-lattice method scheme for the first two time-
steps (Reproduced from [9])



2.1 development 61

Symmetry properties

As it was shown in fig.15, once again only symmetrical geometry can
be modelled due to the limitations of the the method of images, with
the advantage of reducing the number of calculations of influence co-
efficients and velocity inductions by half.
Being based on the hypothesis that any vortex ring modelling the
right-hand side of the wing has the same circulation strength Γ of the
corresponding vortex-ring on the left-hand side, the method of im-
ages can be applied only when the motion generates a symmetrical
distribution of circulation and, as a consequence of it, of pressures
and loads.

The linear velocities in the inertial reference frame (IRF), U, W, and
the angular velocity in the body reference frame (BRF) q shown in
blue in fig.23) only generate symmetrical distribution of circulation,
hence we will assume that the other velocities (shown in red in fig.23)
are null.

X
q

Z

IRF

BRF

z

x

y

Y

U

W
p

r

V

Figure 23: Linear and angular velocities vectors in the IRF and BRF

Singularity elements

The singularity elements used in the unsteady vortex-lattice method
are the same vortex-rings employed in the steady method.
The vortex-rings are defined by the four corner points coordinates,
a corresponding strength Γ defined according to the right-hand rule
and the normal vector n in the direction of the upper surface of the
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wing.

The velocity induced by a vortex-ring can be still calculated through
the velocities induced by the four vortex-segments composing the
quadrangle (as in eq.s 129 and 136), obtaining the sum

(u, v, w) =

4∑
k=1

(uk, vk, wk) (160)

hence the sum of eq.60 can be implemented in a routine (‘func_voring’)
that will be employed to calculate the induction of a vortex-ring de-
fined by the couple (i, j)) and the strength Γi, j on the point P(x, y, z),
as follows,

(u, v, w) = func_voring (x, y, z, i, j, Γi, j)

When only the velocity components induced by the trailing vortices
are needed the routine to calculate the induction should implement
the following expression,

(u, v, w)∗ = (u, v, w)TRAIL.VORT.1 + (u, v, w)TRAIL.VORT.2 (161)

Kinematics

First we define a stationary inertial frame of reference (IRF) and a
body reference frame (BRF) attached to the wing, with the origin at
the intersection between the leading-edge and the axis of symmetry
of the wing. At the initial time the IRF and the BRF origins and direc-
tions overlap.
The prescribed flight path, which define the kinematics of the wing,
can be accounted for in terms of the linear velocities in the IRF and
the angular velocities in the BRF.

Considering the hypothesis of symmetrical distribution of loads, as
it was shown in fig.23, the velocities time histories that must be given
as an input are

U(t) =
dX(t)
dt

, W(t) =
dZ(t)
dt

(162)

which are the two components of the velocity of the origin of the
BRF with respect to the IRF, in the IRF, and q(t) which represents the
velocity of the rotation of the BRF around its y axis.

At this point we define a transformation between the IRF and BRF
coordinates systems, that is necessary when the Neumann condition
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is expressed in the BRF, hence the velocity components are expressed
in the x, y, z coordinates system. Following the calculations developed
in [13] the coordinates of a vector expressed in the IRF (vX, vY, vZ)

can be transformed into the BRF coordinates (vx, vy, vz) with a trans-
formation matrix (also called direction cosine matrix) involving the
three Euler angles, φ, θ, ψ,

vx

vy

vz

 =

 CθCψ CθSψ −Sθ
SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ
CφSθCψ + SφSψ CφSθSψ − SφCψ CφCθ


vX

vY

vZ


(163)

where the three Euler angles are the three elemental rotations de-
fined by the sequence shown in fig.24, and the inverse transformation
is

vX

vY

vZ

 =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ SφCθ CφCθ


vx

vy

vz


(164)

X

O O
IRF BRF

Z

Y

x

y

z

Figure 24: Sequence of the Euler angles rotations from X, Y, Z to x, y, z
(Reproduced from [13] with modifications)
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The two matrices are often called [TI→B] and [TB→I] where the in-
dices I stands for inertial and B for body.

At each time-step, when the position of the BRF has to be calcu-
lated, the integration of the known velocity vector in the IRF has to
be carried out, while the attitude in terms of the Euler angles could
be calculated through the integration of the rate of variation of the
Euler angles, given by the formula,

φ̇θ̇
ψ̇

 =


1

SφSθ
Cθ

CφSθ
Cθ

0 Cφ −Sφ

0
Sφ
Cθ

Cφ
Cθ


p

q

r

 (165)

The presence of the Cθ at the denominator in the matrix generates
a singularity when θ → π

2
or θ → −

π

2
, moreover the non-linearity in

the elements of the matrix increases the computational effort, hence
a transformation based on quaternions will be used in the current
development of the method.

The Eulero-Rodrigues quaternion parameters are based on the Eu-
ler’s rotation theorem, which states that any BRF attitude can be ex-
pressed by one angle (µ) and a corresponding axis of rotation (defined
by the versor e), so the quaternion components are defined as follows,


q0
qx

qy

qz

 =



cos
µ

2

ex sin
µ

2

ey sin
µ

2

ez sin
µ

2


(166)

and as it is shown in [13], the rate of variation of quaternion com-
ponents is related to the angular velocities in the BRF through the
following linear set of equations,


q̇0
q̇x

q̇y

q̇z

 =
1

2



0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0




q0
qx

qy

qz

 (167)



2.1 development 65

where p = 0 and r = 0 for symmetrycal motion, and this formula-
tion can be integrated to evaluate the attitude of the BRF in terms of
the quaternion components and then transformed back into the Euler
angles, that can be used in the transformation matrices.

The velocity of the origin of the BRF with respect to the IRF, in BRF
coordinates are obtained through the following transformation,

u

v

w

 = [TI→B]

U

V

W

 (168)

where V = 0 for symmetrycal motion.

Grid generation

The process that leads to the generation of a lattice of vortex-rings on
the wing follows the same steps of the steady vortex lattice method
grid generation. The right-hand side of the wing is divided into M
rows and N columns, so the total amount of panels is m = M×N.

The leading-edge of the vortex-rings are placed on the panel
1

4
chord-

wise length, and the collocation points are at
3

4
of the same length.

An example of the arrangement of the vortex-lattice for the UVLM is
given in fig.25, which is similar to fig.19, but a new reference frame
is present (in which the two velocities U and W are defined) and the
wake is modelled by a similar set of vortex-rings.

Once the wing has been modelled, since we are dealing with un-
steady motion, the wake becomes time-dependent and a shedding
procedure has to be addressed. The physical condition that has to
be satisfied is the unsteady extension to the steady Kutta’s condi-
tion, that means the circulation at the trailing edge should vanish
somehow. At the first time step the m bound vortex-rings have m un-
known strengths and no wake is shed. At the second time-step the
circulation of the m bound vortex rings from the previous time-step
is known and we can apply the equivalent of Kutta’s condition for
unsteady methods.

A new row of wake vortex-rings is shed from the trailing-edge of
the wing lattice, as it can be seen in fig.26, at each time-step ti follow-
ing these rules:

• The wake-shedding procedure scans all columns (j = 1 : N) to
create one wake panel for each column.
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Figure 25: Right-hand side semi-wing vortex-rings arrangement for UVLM
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• The leading-segment corner points of a wake vortex-ring with
index j as column index, correspond to the corner points of the
trailing-segment of the last row bound vortex-ring, with index j
indicating the column, at the current time step (ti).

• At the second time step (t2) the trailing-segment corner points
of a wake vortex-ring with index j as column index, correspond
to the corner points of the trailing-segment of the last row bound
vortex-ring, with the same index j, at the first time step (t1).

• At any other time step (ti) the trailing-segment corner points
of a wake vortex-ring correspond to the corner points of the
leading-segment of the last row of wake vortex-rings, with the
same index j, at the previous time step (ti−1).

• The length of the wake panels is related to the space travelled
by the wing during the time-step interval, cwake,p = Q∞∆t.

• The strength of the wake vortex-rings at the current time step is
equal to the strengths of the corresponding column last row of
bound vortex-rings, Γwake,textitti = Γwake,textitti−1 .

leading-segment trailing-segment 

w, t i

w, t i-1

w, t i-2

Figure 26: Example of wake shedding (Reproduced from [9] with modifica-
tions)

Influence coefficients

The aerodynamic influence matrix (AIM) and the corresponding el-
ements called aerodynamic influence coefficients (AIC), namely the
velocity inductions on each collocation point when Γ = 1 for each
bound vortex-ring, can be calculated by the same formulas obtained
in the steady VLM. From eq.106, when the vortex-rings are the only
singularities in the flow-field, ensuring the Neumann condition of no
normal flow on the m collocation points means that we calculate the
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self-induction of the wing, the wake induction and the relative veloc-
ity of the wing with respect to the fluid.
The wake induction and the relative velocity at each time-step are
known quantities because the wake strengths are fixed with the Kutta
condition and the flight path is prescribed. The self-induction of the
wing, when the geometry is fixed, only depends on the m unknown
strengths. Therefore the AIM (filled by the coefficients of self-induction)
can be calculated once before the time-stepping loop begins.

Once again, two scanning procedures loop for each collocation
point and for each self-induction of the vortex-rings composing the
wing model, hence the influence of the vortex-ring L on the colloca-
tion point K is computed through,

aK L = (u, v, w)K L ·nK (169)

where the velocity induction is obtained through the same routines,

(uR, vR, wR)11 = func_voring (x, y, z, i = 1, j = 1, Γ = 1.0)

(uL, vL, wL)11 = func_voring (x, −y, z, i = 1, j = 1, Γ = 1.0)

(u, v, w)11 = (uR, vR, wR)11 + (uL, −vL, wL)11

The influence coefficients for the induced downwash, obtained through
the trailing vortex segments, are calculated as follows,

b11 = (u, v, w)∗11 ·n1 (170)

where (u, v, w)∗11 takes account of the trailing vortices induction.

RHS

In the unsteady extension of the vortex-lattice method, the Neumann’s
condition, which allows the computation of pressures and loads on
the surface of the body, has to be updated at each time-step. The RHS
vector represents the known quantities in the discretized form of the
zero normal velocity boundary condition applied to the M×N collo-
cation points.
The total induction at the time-step t = ti on an arbitrary collocation
point K is

{
(u, v, w)K1Γ1 + (u, v, w)K2Γ2 + · · ·+ (u, v, w)KmΓm+

+

[(
u(x, y, z, ti), v(x, y, z, ti), w(x, y, z, ti)

)
+ (u, v, w)wake

]}
·nK = 0

(171)
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where (u(ti), v(ti), w(ti)) is the kinematic velocity at the colloca-
tion point defined by the coordinates (x, y, z), expressed in the BRF,
calculated as follows,

u(x, y, z, ti)

v(x, y, z, ti)

w(x, y, z, ti)

 =
[
TI→B

]
ti

U(ti)

V(ti)

W(ti)

+

−q(ti)z + r(ti)y

−r(ti)x + p(ti)z

−p(ti)y + q(ti)x


(172)

and (u, v, w)wakeis the wake total-induction on the collocation point,
that can be calculated with a loop on the wake vortex-rings, since
their strengths are known.
Consequently a right-hand side is defined by the formula

RHSK(ti) =−

{[
u(x, y, z, ti), v(x, y, z, ti), w(x, y, z, ti)

]
+

+ (u, v, w)wake

}
·nK

(173)

Solver

When the geometry of the wing is fixed the AIM coefficients don’t
change at each time-step, hence only the RHS vector needs to be up-
dated, finally the algebraic set of equations can be solved, and it leads
to the computation of the unknown strength ΓK of the bound vortex-
rings.

At each time step a new the set of equation is


a11, a12, ..., a1m

a21, a22, ..., a2m
...

...
...

am1, am2, ..., amm




Γ1(ti)

Γ2(ti)
...

Γm(ti)

 =


RHS1(ti)

RHS2(ti)
...

RHSm(ti)

 (174)

where the matrix inversion(of order m), to calculate the coefficients
that solve the system, is provided only once at the first-time step.

Pressure and loads

The forces evaluation is based on the unsteady form of Bernoulli’s
equation, that, in terms of the local pressure, is
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pref − p
ρ

=
Q2

2
+
∂Φ

∂t
−

qref
2

2
(175)

where q
ref

= −(u(x, y, z, ti), v(x, y, z, ti), w(x, y, z, ti)) is the local
kinematic velocity, Q is the local total velocity of the fluid and pref is
a reference pressure.
When the body is modelled by a thin surface, therefore the force
acting on the panels is given by the pressure gap between the two
surfaces, eq.175 can be re-written considering the difference of the
pressure on the upper and lower faces (∆p) of the panels as follows,

∆p = plow − pup = ρ

[(
Q2t
2

)
up

−

(
Q2t
2

)
low

+

(
∂Φ

∂t

)
up

−

(
∂Φ

∂t

)
low

]
(176)

where the subscript ‘t ′ stands for tangential and the tangential ve-
locity is found from

Qt,up, k =

[
(u, v, w) + (u, v, w)wake

]
k
· τk +

∂Φ

∂τk
(177)

Qt,low, k =

[
(u, v, w) + (u, v, w)wake

]
k
· τk +

∂Φ

∂τk
(178)

where τk is the tangential vector of the k vortex-segment and the
tangential derivative of the potential Φ, from the thin airfoil potential
theory, is

(
∂Φ

∂τk

)
up

≈ Γk

2 ∆lk
(179)

(
∂Φ

∂τk

)
low

≈ −
Γk

2 ∆lk
(180)

where lk is the length of the k vortex-segment. The tangential veloc-
ity due to the wing vortices will have two components for each i, j
panel, in the two directions i, j of the vortex-segments, and it can be
approximated as

± ∂Φ
∂τi
≈ ±

Γi, j − Γi−1, j

2 ∆ci, j
(181)

± ∂Φ
∂τj
≈ ±

Γi, j − Γi, j−1

2 ∆bi, j
(182)

(183)
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where ± represents the upper and lower surfaces, respectively, and
∆ci, j and ∆bi, j are the panel lengths in the ith and jth directions, re-
spectively.

The velocity-potential derivative is obtained considering that for
the vortex ring model ∆Φ = Γ , then

±
∂Φi, j

∂t
= ± ∂

∂t
Γi, j

2
(184)

(185)

A discretized form of the pressure difference for the i, j panel is

∆pi, j =ρ

[
(u + uw, v + vw, w ++ww)i, j · τi

Γi, j − Γi−1, j

2 ∆ci, j
+

+ (u + uw, v + vw, w ++ww)i, j · τj
Γi, j − Γi, j−1

2 ∆bi, j
+
∂

∂t
Γi, j

]
(186)

The force generated by each panel is then

∆F = −(∆p ∆S)i, jni, j (187)

And the total force is obtained by adding all the contribution of the
panels.

Wake Roll-up

The vortex-rings modelling the wake must satisfy another physical
condition at each time step. Since they represent a force-free surface
they must move according to the local stream velocity, which is the
sum of the inductions of the singularities and the free stream velocity.
A scanning procedure takes each wake vortex-ring corner point, cal-
culate the induction, and then performs the motion of the wake vortex-
rings.

First the induction on the corner point indicated by the counter l
is computed with the same routine used in the influence coefficients
calculation,
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(uR, vR, wR)l =

M∑
i=1

N∑
j=1

func_voring (x, y, z, i, j, Γi, j)+

+

Nw∑
K=1

func_voring (x, y, z, iw, jw, Γw)

(uL, vL, wL)l =

M∑
i=1

N∑
j=1

func_voring (x, −y, z, i, j, Γi, j)+

+

Nw∑
K=1

func_voring (x, −y, z, iw, jw, Γw)

(u, v, w)l =(uR, vR, wR)l + (uL, −vL, wL)l

then this velocity allows the calculation of the space travelled in a
time-step, obtained by the formula,

(∆x, ∆y, ∆z)l = (u, v, w)l∆t (188)
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2.2 unsteady method implementation

In this section the implementation of the current unsteady vortex-
lattice method in Matlab scripting language is carried out. This im-
plementation is based on the unsteady development of the method
presented in the previous section.
A brief review of the main features of the method is presented here,

• The wing is modeled by placing vortex rings on the non-planar
surface. Variations in twist angle and airfoil shape is taken into
account by rotation of the normal vector of the panels.

• An unlimited number of wing’s segments can be modeled, each
segment is defined by 6 parameters : span length, taper ratio,
sweep angle, dihedral angle, root twist angle and tip twist an-
gle.

The algorithm flow is shown in fig.27, where the names of the
scripts employed in the method are on the right-hand side of the
blocks.
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Kinematics

ti = ti−1 + ∆t

Wake Shedding
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Solution of
the System
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Aerodynamic loads

·L(ti)
·Di(ti)

Wake Kinematics

ti = tend

End

yes

no

aux1_create_airfoil_geometry.m
aux2_create_wing_geometry.m
aux3_create_kinematics.m

preproc1_lattice.m

main_time_marching.m

Figure 27: Simplified algorithm of UVLM
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2.2.1 Airfoil Geometry

The script ′aux1_create_airfoil_geometry.m ′ loads the geometry data of
the airfoil from a .txt or .dat file including the coordinates of the lower
and upper surfaces of the airfoil and converts the information into the
output needed to take account of the camber line effect on wing aero-
dynamic properties. In the script the actual boundary conditions on
the cambered surface are shifted on the chord line of a flat wing. This
is a common thin-wing approximation [14] and in our case it is used
to prevent surface intersections at the hinges when the wing has a
dihedral angle.Only one airfoil can be used for the whole wing, and
the thickness of the airfoil has no impact on the calculations.
The script creates K new X coordinates using a cosine law spaced
mesh, valid for the upper and lower surfaces to calculate K camber
line’s Y coordinates and K curvatures of camber line.

The output are then

• the camber line Y coordinates

• the curvature of the camber line

• new cosine-law spaced mesh

Two examples of how the airfoil data input is converted and the
plots generated by the script are given below with K = 100.



76 development and implementation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.3

-0.2

-0.1

0

0.1

0.2

y/
c

Mean Camber Line
Max Camber = 0.02 at x = 0.4

(a) Airfoil surfaces and camber line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

d 
y

c/d
x

(b) Curvature of camber line

Figure 28: NACA 2412 airfoil geometry (Matlab)
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Figure 29: Boeing BACXXX airfoil geometry (Matlab)
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2.2.2 Wing Geometry

The script ′aux1_create_wing_geometry.m ′ loads the geometry of the
wing from a .txt or .dat file containing the information of the semi-
wing in terms of

• span-wise length

• chord length

• sweep angle

• dihedral angle

• twist angle

and the semi-wing can be divided in any number of segments with
different geometrical properties.
The script then creates the other symmetrical semi-wing and stores
the information in structs called ′patches ′ .

An example of how the wing geometry is plotted by the script is
presented here:
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Figure 30: Wing geometry (Matlab)
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2.2.3 Kinematics Input

The script ′aux3_create_kinematics.m ′ contains the kinematics of the
wing and stores it for the analysis.
Only symmetrical motion can be processed by the program due to
the restrictions of the application of the method of images.
The kinematics is given in terms of time histories of the linear veloci-
ties in the inertial reference frame (IRF), U, W, and the angular veloc-
ity in the body reference frame (BRF) q (these velocities are shown in
figure 23). It is also possible to add a time history of the twist angle at
the wing tip, in such case the twist angle increases linearly from 0 at
the wing root to the wing tip prescribed value. The final time of the
simulation needs to be chosen in this file as well. It must be reminded
that the initial condition is always at rest (all velocities are 0) and the
wing starts to move at the first time step.
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Figure 31: Example of Kinematics time histories (Matlab)
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2.2.4 Discretization and Vortex Lattice Creation

The script ′preproc1_lattice.m ′ creates the vortex-rings lattice on the
wing parts created by the execution of ′aux1_create_wing_geometry.m ′.
The panelling procedure requires as inputs the number of span-wise
divisions Ni for each segment of the semi-wing and the number of
chord-wise divisions M, that is the same for all segments.

The total number of panels m for a semi-wing, i. e. the total number
of vortex-rings, is:

m =

Nsegments∑
i=1

Ni ·M (189)

The output of the script is a collection of vortex-rings structs, 4-
sided plane shapes which cover the surface of the wing.
A vortex-ring struct contains the following information:

• The X, Y, Z BRF coordinates of the 4 corner points

• The X, Y, Z BRF coordinates of the collocation point, the mid-
point of the panel

• Panel’s area S

• Panel’s normal vector n

• Panel’s twist θ

Figure 32: Panelling on the wing of fig.30 with LE zoom (Matlab)
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Figure 33: Vortex lattice on the wing of fig.30 with M = 8 and Ni = 1 for
each segment (Matlab)

The script takes account of the curvature due to the airfoil shape
by rotating the normal vector n of the panels [14], as shown in figure
fig.34 .
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Figure 34: Rotation of the normals due to the curvature of NACA 2412 air-
foil (Matlab)
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2.2.5 Simulation Settings

Before starting a simulation the settings must be chosen in the script
′main_time_marching.m ′. They are called ′flags ′ and can be set on ON
or OFF.

The flag is listed below:

• Wake roll-up flag activates the routine that calculates the veloc-
ities induced by the singularities in the flow-field on the wake
and move the corner points of the wake vortex-rings.

• Vortons flag activates the routine that transforms wake vortex-
rings into vortons.

2.2.6 Aerodynamic Influence Matrix

The computation of the AIM is performed once, by the function ′func_AIM.m ′.
At this point the self-induction coefficients fulfill the AIM and the
trailing-vortices inductions fulfill another matrix called TV_AIM.

2.2.7 Time Stepping Procedure

The script ′main_time_marching.m ′ takes the airfoil and wing geom-
etry, the kinematics and the vortex lattice properties as inputs and
simulate the potential, unsteady flow field through a time stepping
technique. Firstly the time step is calculated forcing the chord of the
wake panels cwake,p to be homogeneous to the wing panels’ chordwise
length cwing,p (shown in fig. 35) as stated in [15], [23] and reproduced
here through the formulas:

cwing,p ≈ cwake,p (190)

cwing,p =
cref

M
(191)

cwake,p = Q∞,ref ·∆t (192)

∆t =
cref

M ·Q∞,ref
(193)

where cref is the mean geometrical chord, M is the number of chord-
wise divisions and Q∞,ref is the mean velocity of the wing computed
through a time average of the modulus of the velocity vector Q =

{U, V, W}.

As a consequence of the calculation of the time step through the
formula 193, the number of time steps in which the simulation is
divided (Nt) depends on the vortex lattice settings.
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Figure 35: Wing and wake panels’ chords

Nt =
tfin

∆t
(194)

Once the time-step has been calculated the loop starts at t = ∆t.
We recall that at t = 0 the origins and the three directions of the BRF
and the IRF coincide and the wing is considered at rest.
At each time-step the script updates the wing attitude in the IRF
through the auxiliary kinematic eq.s 167 and a scanning-procedure
on each vortex-ring moves the corner points according to the BRF ve-
locity (U, V, W) of a quantity expressed by the vector (∆X, ∆Y, ∆Z),
obtained as

(∆X, ∆Y, ∆Z) = (U, V, W)∆t (195)

If the current time-step is the first, the script doesn’t shed any
vortex-ring at the trailing edge and skips to the calculation of the
RHS and the solution of the set of equations.
From the second time-step until the end of the time loop, at each time-
step, the shedding procedure adds a row of wake vortex-ring at the
trailing edge, following the rules presented in the previous section.
Then the core-function ′func_proc_solver.m ′ calculates the RHS and
solves the set of equations which returns the singularities strength
vector Γk(ti) at each time-step. The calculation of the RHS needs the
kinematic velocities of the fluid at the CPs, given by eq.172 and the
wake inductions, performed through the routine ′func_voring.m ′ ap-
plied to the wake vortex-rings.
The output in terms of the forces acting on the lifting-surface is car-
ried out through eq.186.
Finally the wake roll-up routine moves the wake vortex-rings corner
points.



2.2 unsteady method implementation 85

2.2.8 Vortons Wake Model Implementation

As we stated in the previous chapter the vortons can be employed to
represent the vorticity in the flow-field. In the current implementation
of the unsteady vortex lattice method we can choose to use vortons
instead of vortex-rings to model the wake shed by the wing at the
trailing-edge.

The vorton wake model implementation procedure contemplates

1. The conversion of the wake vortex-rings into vortons

2. The convection of the vortons

3. The vorticity stretching that changes the vortons strength and
orientation

The conversion of the wake vortex-rings into vortons is performed
through the following steps

1. The scheme presented in fig.36 is used to represent the vortex-
rings wake as vortons

2. The circulation of the vortex-rings is integrated to calculate the
vorticity of the vortons

The position rp(t) of a vorton in time is given by

rp(t+1) = rp(t) +Q(rp(t), t)∆t (196)

while its strength is uptaded as follows,

αp(t+1) = αp(t) +αp(t) · ∇Q(rp(t), t)∆t (197)

When the vorton wake model is activated the wake consists of two
distributions of singularities, the near wake vortex-rings and the far-
wake vortons. The near wake is composed by the first row of wake
panels, attached to the trailing-edge, where the Kutta condition is ap-
plied in the same way of the vortex-rings wake model and a second
row of vortex-rings which is going to be converted into vortons. At
each time-step, after the second row of wake vortex-rings is shed, that
is after the second time-step, the conversion from near-wake vortex-
rings to far-wake vortons is accounted for.
The strength αp(t) of each vorton is computed by integrating the
strength of the vortex line segments between adiacent panels, as fol-
lows,
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αp(t) =
∫
Γds (198)

that for the current scheme is discretized as follows,

αj(tk) =0.5tj1(−Γ
k−1

j−1 + Γ
k−1

j) + t
j
2(Γ

k−1
j − Γ

k−2
j)+

+0.5tj3(Γ
k−1

j − Γ
k−1

j+1)
(199)

where the quantities tj1, tj2, tj3 and the circulations are presented
in fig.36.

wing

wing

wing

2

2

2

Near Wake Vortex-Rings Conversion Zone Far Wake Vortons

Vortex Line (not included in the integration)

Figure 36: Scheme for vortex-rings to vortons conversion

Finally we need to choose a core-radius for the regularization func-
tion. A common choice in the literature is to fix the core-radius to the
space travelled in a time-step by the body, that is σ = kQ∞∆t, there-
fore as shown in [11] we apply this condition with k = 2.
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VA L I D AT I O N A N D R E S U LT S

In this chapter the current method is validated with respect to analyt-
ical and computational methods available in the literature. First the
steady method calculation of lift and drag has been carried out and
the results compared with the lifting line theory with a correction for
the wings shapes proposed by Jones as shown in [17].
Then the distribution of loads has been compared to that calculated
through a VLM in [9] to check the effects of taper ratio and sweep
angle.
Then the UVLM calculation of lift and drag have been validated in
the case of a sudden acceleration, and plunging periodic oscillations.

3.1 lift coefficient and polars

The steady VLM has been tested to check the correct calculation of the
lift and drag. A flat plate with varying A undergoing different an-
gles of attack generated the lift coefficient curves of fig.37 and fig.38.
Three different discretizations have been tested to show the influence
of the number of panels on the calculations.

The three discretizations tested are

1. M = 4 N = 10

2. M = 4 N = 20

3. M = 4 N = 40

The reference lift coefficient’s curves are obtained from lifting line’s
theory with the correction for non-elliptical spanwise load distribu-
tions, as follows

CL(α) = 2π
A

2(1+ τ) + EA
α (200)

where Jones’ correction parameter is E =
p
A

, p is the perimeter of
the semi-wing and τ is a function of theA and λ.

87
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Figure 37: CL −α curves generated by the VLM forA = 4,A = 8,A = 16

and comparison with lifting line theory results (Matlab)
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Figure 38: CL − α curves generated by the VLM forA = 32,A = 64,A =
128 and comparison with lifting line theory results (Matlab)
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The slope of the lift coefficient curves CLα calculated through the
VLM is shown w.r.tA and compared to the one calculated with the
lifting line theory.
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Figure 39: CLα - A curves and comparison with lifting line theory results
(Matlab)

The induced drag coefficient polars are obtained through the VLM,
while the reference values are obtained from lifting line’s theory with
the correction for non-elliptical spanwise load distributions K, that is

CDi(CL) = K
CL
2

πA
.
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Figure 40: CL −CDi curves generated by the VLM forA = 4,A = 8,A =
16 and comparison with lifting line theory results (Matlab)
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Figure 41: CL −CDi curves generated by the VLM forA = 32,A = 64,A
= 128 and comparison with lifting line theory results (Matlab)
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3.2 taper ratio effect on loads

The effects of taper ratio, namely the ratio between the root chord
and the tip chord of a wing λ =

croot

ctip
, on span-wise loads have been

investigated with the current VLM. The loads distribution used as a
reference has been calculated through a VLM found in [9]. The load

calculated by the VLM is Cl(η) =
2Γ(η)

cV∞ . In the current calculations

the wing is a flat plate withA = 7.28 and λ = 0.4.

Wing Properties

Airfoil Flat Plate A 7,28

b/2 2,55 m Λ 0◦

croot 1 m λ 0,4

Γ 0◦ M x N 4 x 20

0
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La�ice
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Figure 42: Wing properties and discretization (Matlab)
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Figure 43: Loads distribution generated by the VLM forA = 7.28, λ = 0.4,
M = 4 N = 40, and comparison with [9] (Matlab)
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3.3 sweep angle effect on loads

The effects of sweep angle on span-wise loads have been investigated
with the current VLM. The loads distribution used as a reference has
been calculated through a VLM found in [9].The load calculated by

the VLM is Cl(η) =
2Γ(η)

cQ∞ . In the current calculations the wing is a

flat plate withA = 4 and Λ = 0◦, 45◦,−45◦.

Wing Properties

Airfoil Flat Plate A 4

b/2 2 m Λ 0◦|+ 45◦|− 45◦
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Figure 44: Wing properties and discretization (Λ = +45◦) (Matlab)
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Figure 45: Loads distribution generated by the VLM forA = 4, M = 4 N =
20, and comparison with [9] (Matlab)
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3.4 curvature of camber-line effect on loads

The effects of non-zero curvature of the camber-line on chord-wise
loads have been investigated with the current VLM. The pressure
coefficient difference distribution used as a reference has been calcu-
lated through the program Xfoil. In the current calculations the airfoil
used is a NACA 2404 and the wing hasA = 200 and λ = 1, Λ = 0◦.
The ∆Cp(x/c) is calculated in the proximity of the axis of symmetry
of the wing to avoid 3-D aerodynamic phenomena.
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Figure 46: Loads distribution generated by the VLM and comparison with
Xfoil (Matlab)
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3.5 sudden acceleration

The first test case for the UVLM is the sudden acceleration, in which
the wing starts from being still at t = 0 and undergoes an acceleration
in the first time step that leads it to the steady motion in which the
angle of attack is equal to 5◦. The results of a similar UVLM in [9] is
taken as a reference. The reference chose a M = 4,N = 6 mesh and

a non-dimensional time-step ∆τ =
1

16
. This non-dimensional time is

defined as τ =
tQ∞,ref

cref
.

The wings used in this test case are rectangular wings with different

A and the time-step is τ =
1

16
. The lift coefficient history shows a

transient due to the acceleration (that is the derivative of the potential

function
∂Φ

∂t
) and a steady-state value due to the non-zero angle of

attack. The agreement between the two methods is good, nonetheless
the differences in the calculations at the beginning of the motion can
be explained by the different mesh, [9] uses a coarser mesh, and the
different approach to the wake-panels shedding.
Osservations found in [15] suggests to choose a span-wise panelling
that leads to aA of the single panels (defined asApanel = bpanel

2/Spanel
) smaller than 3, while in the cases below this condition is matched
in the first simulation only (A = 4).

Wings Properties

Airfoil Flat Plate

A 4|8|12|20

b/2 2|4|6|10 m

λ 1

croot 1 m

Λ 0◦

Γ 0◦

Simulation Config.

M 16

N 12 | 24

Motion See fig.47

α 5◦

U 1 m/s

τfin 10

Wake Model Vortex Rings - Roll-up
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Figure 47: Sudden acceleration kinematics zoomed in the range [0, 1] τ (Mat-
lab)
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Figure 48: Lift coefficient generated by the UVLM for a sudden acceleration,
and comparison with [9] (Matlab)
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Figure 49: 3-D view of a rectangular wing withA = 4 undergoing sudden
acceleration (Matlab)
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Figure 50: Drag coefficient generated by the UVLM for a sudden accelera-
tion, and comparison with [9] (Matlab)
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3.6 convergence of steady-state values

In this test case we focus on the transient that leads to the steady-
state value of the lift and drag coefficients when a rectangular wing
ofA = 20 undergoes two different sudden accelerations with α = 2◦

and α = 8◦. We evaluate the convergences to the steady-state value in
terms of the percentage of the final values reached in the simulations.
The test-case shows that the convergence to a steady-state value is in-
dependent of the angle of attack both for lift coefficient and induced
drag coefficient, but in the case of the induced drag coefficient the
final value is reached later in time.
The results are shown in fig.51.

Wings Properties

Airfoil Flat Plate

A 20

λ 1

b/2 10 m

croot 1 m

Λ 0◦

Γ 0◦

Simulation Configurations

M 4

N 12

Motion Sudden Acceleration

α 2◦ | 8◦

U 100 m/s

τfin 50

Wake Model Vortex Rings - No Roll-up

3.7 steady-state values

The steady-state values of lift and drag coefficients of the previous
test-cases have been plotted with respect to the angle of attack, hence
we obtain the lift coefficient curves and induced drag polars in fig.52.

Wings Properties

Airfoil Flat Plate

A 20

λ 1

b/2 10 m

croot 1 m

Λ 0◦

Γ 0◦

Simulation Configurations

M 8

N 12

Motion Sudden Acceleration

α 0◦ − 16◦

U 1m/s

τfin 30

Wake Model Vortex Rings - No Roll-up
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Figure 51: Convergence of lift and drag coefficients generated by the UVLM
for a sudden acceleration, and comparison with results of lifting-
line theory’s results (Matlab)
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Figure 52: Steady-state values of lift and drag coefficients generated by the
UVLM, and comparison with results of lifting-line theory’s re-
sults (Matlab)
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3.8 periodic motion

The validation of the unsteady VLM is performed through the com-
parison with the analytical solutions of 2-D aerofoils in inviscid flow.
Theodorsen theory’s for aerofoils undergoing harmonic small ampli-
tude plunging motion provides a solution for inviscid flows and the
calculation of lift coefficient that can be compared to the results of the
UVLM when the aspect ratio is large enough, say A = 100, and the
3-D effects are negligible.
The plunging motion is described by the function h = h0 sin(ωt),
whereω is the frequency, which generates harmonic oscillations along
the Z axis, and a uniform X axis velocity.
We analyse the aerodynamic beahviour of the wing undergoing dif-
ferent reduced frequencies motions, where the reduced frequency is

defined as k =
ωc
2Q∞ .

The span-wise panelling in the current method has not being in-
creased to ignore the 3-D effects at the wing-tip, while the chord-wise
mesh should be dense enough in order to obtain a small ∆t to catch
the unsteadiness of the motion.

Wings Properties

Airfoil Flat Plate

A 100

λ 1

b/2 50 m

croot 1 m

Λ 0◦

Γ 0◦

Simulation Configurations

M See fig.s 53,55,57

N See fig.s 53,55,57

Motion Periodic Motion

U 1 m/s

h(t) −0.1 sin(ωt) m

k 0.25 | 0.50 | 0.75

tfin 4 T

Wake Model Vortex Rings - No Roll-up
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(c) M = 20 N = 12

Figure 53: CL − 2π
t
T

curves generated by the UVLM for a periodic motion
with k = 0.25, and comparison with results of Theodorsen the-
ory’s results (Matlab)
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Figure 54: CL − h curve generated by the UVLM for a periodic motion with
k = 0.25, and comparison with results of Theodorsen theory’s re-
sults (Matlab)
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(c) M = 40 N = 12

Figure 55: CL − 2π
t
T

curves generated by the UVLM for a periodic motion
with k = 0.50, and comparison with results of Theodorsen the-
ory’s results (Matlab)
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Figure 56: CL − h generated by the UVLM for a periodic motion with
k = 0.50, and comparison with results of Theodorsen theory’s re-
sults (Matlab)
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Figure 57: CL − 2π
t
T

curves generated by the UVLM for a periodic motion
with k = 0.75, and comparison with results of Theodorsen the-
ory’s results (Matlab)
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Figure 58: CL − h curve generated by the UVLM for a periodic motion with
k = 0.75, and comparison with results of Theodorsen theory’s re-
sults (Matlab)
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3.9 results for vortons wake model and comparison

Once the vortex-rings wake model has been tested, we test the conver-
sion to vortons of the wake. The validation test cases are the sudden
acceleration and the periodic plunging motion. The setting of the sim-
ulations are shown in the tabs.
The sudden acceleration test cases show that the number of span-
wise divisions heavily influences the results, therefore a thicker mesh
is needed when the A is bigger to avoid a coarse model of the vor-
ticity in the wake. The vorton wake model shows differences in the
evaluation of lift forA = 4, this could be due to the effects of vortons
stretching, which is stronger in the starting vortex and in the wing-tip
vortices.
The plunging periodic motion is shown in fig.62, where the chord-
wise mesh has been chosen with the criterion explained in [15].

Wings Properties

Airfoil Flat Plate

A 4|8|12|20

b/2 2|4|6|10 m

λ 1

croot 1 m

Λ 0◦

Γ 0◦

Simulation Config.

M 16

N 12 | 24

Motion See fig.47

α 5◦

U 1 m/s

τfin 10

Wake Model Vortex Rings - Roll-up | Vortons - Roll-up

σ 2Q∞∆t
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Figure 59: 3-D view of a rectangular wing withA = 4 undergoing sudden
acceleration, vortons wake model (Matlab)
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Figure 60: Lift coefficient generated by the UVLM for a sudden acceleration,
and comparison with [9] (Matlab)
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Figure 61: Drag coefficient generated by the UVLM for a sudden accelera-
tion, and comparison with [9] (Matlab)
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Wings Properties

Airfoil Flat Plate

A 100

λ 1
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croot 1 m

Λ 0◦
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Simulation Configurations

M See fig.62

N 48

Motion Periodic Motion

U 1 m/s

h(t) −0.1 sin(ωt) m

k 0.25 | 0.50 | 0.75

tfin 2 T

Wake Model Vortons - No Roll-up
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Figure 62: CL − 2π
t
T

curves generated by the UVLM for a periodic motion,
and comparison with results of Theodorsen theory’s results (Mat-
lab)
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3.10 conclusions

As shown in this chapter the current method tries to avoid the phy-
isical inconsistency of the arbitrary constant used in some methods
for the wake vortex-rings shedding while obtaining encouraging re-
sults for the evaluation of lift and drag of lifting surfaces undergoing
unsteady motion. The validation test-cases carried out in this thesis
have shown good agreement with analytical and numerical results
available in the literature, and both vortex-rings and vortons can be
used as a wake-model.

When the current method is employed it should be reminded that
particular attention must be given to the following parameters

• The discretization of the wing, in terms of chord-wise and span-
wise (M×N) mesh influences the quality of the results, in par-
ticular the chord-wise panels are related to the time-step of the
simulation and, as a consequence of it, to the capability of catch-
ing the unsteadiness of the phenomena.

• A thicker span-wise discretization is needed when the wake
model is made by vortons, as the vortons represent the vorticity
in the wake in a somehow different way from vortex-rings.

Nonetheless this newly developed method is a fast and reliable tool
for preliminary design of lifting surfaces.

3.11 future developments

Being built on a modular set of Matlab scripts and functions, the cur-
rent method could well represent a starting point for different appli-
cations or integrations. Some of them are listed below

• Unsteady asymmetrical motion can be accounted for with a loss
on the speed of the simulations.

• A script or function can be included to evaluate moments.

• Fluid-structure interaction integrated tools can be built using
the current method for the evaluation of forces on the surfaces.

• The aerodynamic analysis can be extended to other lifting sur-
faces in the domain to account for multi-body fluid interaction.



a
A P P E N D I X A : I N P U T F I L E S F O R M AT S

a.1 airfoil geometry input file

An example of how the input airfoil file must be written is given
below:

1.0000 0.0013

0.9500 0.0114

0.9000 0.0208

0.8000 0.0375

0.7000 0.0518

0.6000 0.0636

0.5000 0.0724

0.4000 0.0780

0.3000 0.0788

0.2500 0.0767

0.2000 0.0726

0.1500 0.0661

0.1000 0.0563

0.0750 0.0496

0.0500 0.0413

0.0250 0.0299

0.0125 0.0215

0.0000 0.0000

0.0125 -0.0165

0.0250 -0.0227

0.0500 -0.0301

0.0750 -0.0346

0.1000 -0.0375

0.1500 -0.0410

0.2000 -0.0423

0.2500 -0.0422

0.3000 -0.0412

0.4000 -0.0380

0.5000 -0.0334

0.6000 -0.0276

0.7000 -0.0214

0.8000 -0.0150

0.9000 -0.0082

0.9500 -0.0048

1.0000 -0.0013
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On the first column there are the X coordinates and on the second
column there are the Y coordinates.
The file shows that the coordinates start from the trailing edge of the
upper surface and end at the trailing edge of the lower surface. The
upper surface matches the lower surface at the leading edge in the
middle of the listing of coordinates.

a.2 wing geometry input file

An example of how the input wing file must be written is given be-
low:
% WING GEOMETRY INPUT DATA(N PARTS PER SEMI -SPAN) ,ALL MEASURES IN METRES AND DEGREES ,SPACE

IS THE DIVIDER ,POINT IS THE DECIMAL SEPARATOR
% MIND THAT CHORD_OUT MUST BE EQUAL TO CHORD_IN WHEN THE PARTS ARE SUBSEQUENT
% MIND THAT TWIST_ANGLE_INNER MUST BE EQUAL TO TWIST_ANGLE_IN WHEN THE PARTS ARE SUBSEQUENT
% INNER -MOST PART DATA FIRST (NEAREST TO AXIS OF SIMMETRY) THEN OTHER PARTS DATA

SPAN_LENGTH SWEEP_ANGLE DIHEDRAL_ANGLE TWIST_ANGLE_IN TWIST_ANGLE_OUT CHORD_IN CHORD_OUT
6 20 0 0 0 4 2

3 30 0 0 0 2 1 . 5

1 20 45 0 0 1 . 5 1

1 0 85 0 0 1 1

3 0 180 0 0 1 1
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