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Symbols and Acronyms

The symbols and acronyms listed below are sorted in order of appearance

through the main part of this work.

RANS Reynolds Averaged Navier-Stokes

CFD Computational Fluid Dynamics

BEM Boundary Elements Methods

PaMS Panel Method Solver

2D Bidimensional

3D Tridimensional

DIAS Dipartimento di Ingegneria Aerospaziale

(tr. Department of Aerospace Engineering)

BC Boundary conditions

Oxyz Cartesian reference frame, centered in O, called

Global Reference Frame System.

Gxyz Cartesian reference frame, centered in G, called

Local Reference Frame System.

i Unit vector belonging to a mutually perpendicular triad aligned

to the x axis.

j Unit vector belonging to a mutually perpendicular triad aligned

to the y axis.

k Unit vector belonging to a mutually perpendicular triad aligned

to the z axis.

r(x, y, z, t) Particle position vector in function of time,

1



Symbols and Acronyms

any subscript denotes a named point.

U(x, y, z, t) Velocity vector

u(t) The scalar component of U , at a given time, along the x

direction, respectively.

v(t) The scalar component of U , at a given time, along the y

direction, respectively.

w(t) The scalar component of U , at a given time, along the z

direction, respectively.

NS Navier-Stokes Equation Set

Re Reynolds number

BL Boundary Layer

ρ Density

M Mach number

ω Vorticity vector

A An arbitrary vector function

Γ Circulation of a vector field

φ Scalar potential function

Ψ Vector potential or stream function

r′ Relative position vector between the evaluation point and any

point swept by the volume integral into the Green’s function.

t Time

∂
∂t Eulerian time derivative

p Pressure

ν Cinematic viscosity coefficient

D
Dt Lagrangian time derivative

δℓ Material line element

Uφ Velocity component bound to the scalar potential function

UΨ Velocity component bound to the stream function

UΨ1,2
Velocity induced by a constant strength vortex line segment

which begins at point 1 and ends at point 2

∞ Subscript ∞ denotes conditions at infinity
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Symbols and Acronyms

n Unit vector normal to a surface

TE Trailing edge

∆p
T.E.

Pressure jump at the trailing edge

γ
T.E.

Vorticity component parallel to the trailing edge

φupper Potential at the point on the upper surface of the trailing

edge of the wing

φlower Potential at the point on the lower surface of the trailing

edge of the wing

Γspan,wing Bound vorticity on the wing oriented in the direction

parallel to the trailing edge

Γspan,wake Bound vorticity on the wake oriented in the direction

parallel to the trailing edge

ϕ Doublet wake sheet equivalent to the vortex wake sheet Ψ

F (t) Total force acting over a surface

M(t) Total moment of force acting over a surface

L Lift component

D Drag component

Df Friction drag component

Dp Form drag component

Di Induced drag component

q∞ Dynamic pressure of the asymptotic velocity

Cp Pressure coefficient

Cl Lift coefficient

Cdi Lift-induced drag coefficient

c Reference chord

σ Source strength

µ Doublet strength

Ur The velocity of the relative motion between a mobile surface

of the body and its frame center

Ω The angular velocity around the body frame center

αp Vortex element
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Symbols and Acronyms

αxp Scalar component of αp along the x direction

αyp Scalar component of αp along the y direction

η Core radius associated with the vorton

rη Ratio between the absolute distance of the evaluation point from

the vorton and the core radius

FWE Forward or also Explicit Euler integration scheme

RK2 Predictor-corrector, or also 2nd order Runge-Kutta

integration scheme

∆S Panel area

∆t Discrete time step

ǫL Local numerical error.

Rmax The radius of a circular plane of marked particles

xt0 The initial separation between the center of the moving object

and the plane of marked particles

yt0 The starting y coordinate of a particle belonging to the marked

plane of particles

X The displacement coordinate in the x direction

Y The displacement coordinate in the y direction

R The radius of the circle

yfin Final y coordinate of the particle

DP Partial drift volume

DV Lagrangian drift volume

tel Elapsed time

tcpu Calculation time

AR Aspect Ratio

β(t) The instantaneous angle measured clockwise from the mean chord,

referring to the pitch-heaving airfoil motion

βa Amplitude of pitching oscillation

ωPH Pitching and heaving movement frequency, related to the reduced

frequency k

φPH Phase angle ahead of the pitch-heaving motion
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Symbols and Acronyms

h(t) The instantaneous vertical shift from the mean position,

referring to the pitch-heaving airfoil motion

ha Amplitude of heaving oscillation

k Reduced frequency

NASA National Aeronautics and Space Administration

d Propeller Diameter

r/R Ratio between the radial distance from the propeller hub and the

propeller radius

τ Ratio between the thickness and the chord length, referring to the

propeller radius

c/d Ratio between the airfoil chord length and the propeller diameter

β Propeller airfoil pitch angle

CL,design Design lift coefficient

AoA Angle of attack

CT Thrust coefficient

T Propeller or Rotor Thrust

n Propeller Revolutions per Second

J Propeller Advance Ratio

C∗
P Sonic Pressure Coefficient

θ Angular coordinate in a polar reference frame

r Radial coordinate in a polar reference frame

PMARC Panel Method Ames Research Center
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Introduction

There are many interesting cases of wake interaction with bodies, an ex-

ample is the interaction between a propfan and a wing section. Another

common case in aeronautics is the mutual influence between the wings and

the tail plane of an airplane, or the interaction between a rotor and a he-

licopter mainframe. Another interesting case is the following: the autoin-

duction existing between a single rotating blade and its wake. Moreover,

quoting a non aeronautical example, there is a mutual influence between a

skyscrapers group built in close proximity and their wakes. There are many

other interesting cases but they are not quoted for the sake of brevity.

The state of the art into this research field uses the RANS (Reynolds Av-

eraged Navier-Stokes) CFD (Computational Fluid Dynamic) model as anal-

ysis tool. Even if it is possible to simulate a wake-body interaction with this

model it still requires a large amount of computational time and a corre-

spondingly large economical effort.

The bibliography shows a great difficulty in predicting these unsteady flows,

thus the common aeronautical practice, in presence of propellers and rotors

and in absence of viscous flow separation effects, suggests to model rotat-

ing parts with actuator disks, coupled with an inviscid flow field solution,

a BEM (Boundary Element Method or panel method) in a subsonic flow

field, otherwise there is Euler’s equation set. Another common practice is

6



Introduction

the use of the blade element theory, instead of actuator disks, however the

main drawback into this approach, compared to actuator disks, is the more

difficult interfacing with the inviscid flow field used. Often are also produced

experimental data useful for specific configurations. But it must be pointed

out that the main costs in running experimental setups with mobile parts,

which must be engine-driven, are the engine itself and the mobile parts.

Summarizing the main drawbacks into these approaches are the computa-

tional and the economical costs. These drawbacks and the lack of information

about these phenomena are the main reason to study them, and it can be

shown that they are overcame by vorton methods. Vorton methods use the

same assumptions of panel methods, but the velocity field is solved with a

Laplace and a Poisson equation. This is done in order to use the Helmholtz

velocity decomposition and then to model the wake vorticity as vortex par-

ticles, the vortons. Introducing a vorton wake means to simulate the wake

evolution as particle paths. The numerical error sources within particle path

calculation can bring particles to penetrate bodies supposed impermeable.

When it is considered an inviscid flow, the strength and shape of the wake

is influenced by the mutual interaction with bodies: in order to correctly

estimate the acting forces the penetration must be avoided.

The problem is solved creating a Matlab guide code, a 2D panel method

which computes passive particles paths interacting with a moving, non-lifting,

impermeable cylinder in order to find the numerical error sources in the par-

ticle paths. It has been found that the main error sources are the time step

size and the time integration scheme, however directly reducing these error

sources increases the computational time, which is an undesirable feature

during a pre-design phase. It is more effective to apply a simple countermea-

sure against the few penetrating particles, without touching elements like the

7



Introduction

time-step or the time integration scheme. Once found a countermeasure it is

applied to the main program used into this thesis, the PaMS (Panel Method

Solver) code, an open source unsteady panel method solver with a vorton

wake formulation.

The change applied in PaMS is a replacement which works when a par-

ticle enters inside, validated by the test cases. The first test case is about a

pitch-heaving airfoil interacting with a fixed airfoil. This test case shows that

PaMS is able to catch the frequency of the normal forces acting over these

airfoils, which is the same on both and coincides with the motion frequency.

The test has been executed using symmetrical airfoils and a far upstream

wind with null angle of attack in order to emphasize that the normal force

arising over the downstream airfoil is due to the interaction with the wake

coming from the upstream airfoil. PaMS has also been used to simulate a

transonic propfan interacting with a wing section mounting a supercritical

airfoil, whose results have been compared with bibliographical experimental

data. In this case the result is the good fitting between the numerical and

experimental data and that this happens even in the case of transonic flow,

until there are no shock waves over the wing. Another important result is

that if the propfan wake is removed the numerical simulation is no more able

to model the downwash and the upwash effect over the wing sections behind

the propfan. PaMS can also interface with structural solvers allowing a pre-

design sizing which lightens the economical efforts in running experimental

setups, like aeroacustical tests or interaction tests between the elements of an

airplane, once known the wake-body interaction. Finally, the results avail-

able at DIAS (Department of Aerospace Engineering) allowed to setup an

experiment at the Air Force Academy in Pozzuoli in order to validate this

method.
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Chapter 1

INCOMPRESSIBLE AND

INVISCID FLOWS

In this chapter, the emphasis is on the incompressible and inviscid flows

on which classical panel methods are based. In order to model the wake by

means of the vorton method, the velocity field will be defined by the well-

known Helmholtz decomposition. For inviscid flows, the velocity field may

be described by means of the decomposition into two velocity components

that have a kinematic significance: a rotational component counts for the

velocity field due to the vorticity in the flow whereas a potential component

is used in order to enforce the boundary conditions (from now on BC) and to

ensure the compatibility of the velocity and the vorticity field in the presence

of boundary. In order to consider the inviscid evolution of the vorticity field

generated by the aerodynamic configurations, the mechanism of generation

and shedding of the vorticity from the surface of the body into the wake is

expressed in terms of the Kutta condition.

9



INCOMPRESSIBLE AND INVISCID FLOWS

1.1 The domain

Consider the external flow field surrounding a three dimensional lifting

body. The domain of interest includes all fluid external to the body surfaces

(see figure 1.1). In general, the lifting configuration (e.g.: aircraft) consists

of the wing, the vertical tail and the horizontal stabilizer. Each lifting part

has a sharp trailing edge from which trailing vortex wakes sheds.

Figure 1.1: the fluid domain.

Prescribe a three-dimensional coordinate system to describe mathemat-

ically the flow of fluid through three-dimensional space. Consider the most

common orthogonal coordinate system: the cartesian coordinate system. The

x, y, and z are mutually perpendicular, and i, j, and k are unit vector in the

x, y, and z directions, respectively. A arbitrary point P in the domain at a

given time is located by the position vector r, where

r = r(x, y, z, t) = x(t)i + y(t)j + z(t)k (1.1)

10



INCOMPRESSIBLE AND INVISCID FLOWS

If the fluid velocity is denoted by U , it can be expressed as

U = U(x, y, z, t) = u(t)i + v(t)j + w(t)k (1.2)

where u(t), v(t) and w(t) represent the scalar component of U , at a given

time, along the x, y, and z directions, respectively.

The flow around the body is assumed to be inviscid and incompressible,

any vorticity in the domain is localized on the thin wake regions trailing the

lifting surfaces; these assumptions greatly simplify the form of the Navier-

Stokes equations (from now on NS), commonly used to solve fluid-dynamic

problems.

First, consider the hypothesis of inviscid flow. A flow that is assumed to

involve no friction, thermal conduction, or diffusion is called inviscid flow.

This kind of flow does not exist in nature but there are many practical flows

where the influence of mass diffusion, viscosity, and thermal conduction is

small. In these cases, it is possible to model the inviscid flows.

Theoretically, the flow is assumed to be inviscid in the limit as the

Reynolds number Re goes to infinity where the Reynolds number is physi-

cally a measure of the ratio of inertia forces to viscous forces in a flow. For

many practical problems, even though this high but finite parameter, the in-

fluence of the diffusive effects is limited to a very thin region adjacent to the

body surface. This limited region is defined as the boundary layer (from now

on BL) and the flow is essentially inviscid outside this thin region. Therefore,

the considered external domain is the region outside the boundary layer. For

such Re, the flow is assumed to be inviscid.

It is well-known that inviscid theory by itself cannot give satisfactory

results for the prediction of the total drag.

Now, consider the hypothesis of incompressible flow. Denote the density

by ρ. A flow in which the density ρ is constant is called incompressible. All

11



INCOMPRESSIBLE AND INVISCID FLOWS

flows are compressible where a flow is called compressible where the density

is variable. Really incompressible flow does not occur in nature. Similarly

to the discussion of inviscid flow, there are many aerodynamic problems that

can be modeled as being incompressible. Theoretically, the flow of gases

is assumed to be incompressible for M < 0.3 where the Mach number M

is the ratio of the flow velocity to the speed of sound (unless the inferior

critical Mach number is lesser than 0.3) and like the Reynolds number, it is

a powerful parameter in the study of gas dynamics. Practically, the flow of

gases at low Mach number is essentially incompressible.

The equations of motion for a homogeneous fluid in the absence of reac-

tions or mass diffusion are based on three physical conservation laws1 [32].

Since the average measurable values of the flow properties are desired for

aerodynamic applications, the assumption of continuous distribution of mat-

ter is imposed: this assumption is known as continuum. So the governing

equations of fluid motion are derived from conservation of mass, momentum

and energy equations. The resulting system of equations is known as the

Navier-Stokes equations.

Since the flow is assumed to be isothermal, this leads generally to a de-

coupling of the energy equation from the other conservation laws. Therefore,

the velocity and pressure fields are computed initially, and subsequently the

energy equation may be solved for the temperature field. For flows involving

temperature variations, the coupling between the temperature field and the

fluid motion can occur through various effects, such as variations of viscosity

or heat conductivity with temperature, influence of external forces function

of temperature.

Moreover, this system of equations for incompressible flow presents a

1When a fluid is a composition of several chemical species with mass diffusion
and/or chemical reaction, additional conservation laws may be required.
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particular situation in which the unknown pressure does not appear under a

time dependence form due to the non-evolutionary character of the continuity

equation.

At this point, the vorticity will be briefly examined in order to introduce

the role played by the vortex wake in the following chapters. This quantity is

simply twice the angular velocity and is denoted by the vector ω. We know

the following important result for the vorticity:

ω = ∇ × U (1.3)

In a velocity field, the curl of the velocity is equal to the vorticity. Since the

curl of the velocity into the flow has a rotational discontinuity only on the

thin wake region whereas it is assumed to be irrotational otherwise, ∇×U 6= 0

at every point in the wake and ∇ × U = 0 at every point in the remaining

domain.

An important result is the relation existing between vorticity and circu-

lation. Assume that the surface is in a flow field and consider any point P

on this surface. From Stokes’theorem2

Γ = −
∮

C

U · ds = −
∫ ∫

S

(∇× U) · dS (1.4)

Therefore, the circulation about a curve C is equal to the vorticity integrated

over any open surface bounded by C. Hence, if the flow is irrotational ev-

erywhere within the contour of integration and the domain included by the

curve C is an open one and is included into the existence domain of the

vorticity, then Γ = 0, otherwise this result is not guaranteed.

2Consider an open area S bounded by the closed curve C and let A be a vector
field, the line integral of A over C is related to the surface integral of A over S by
Stokes’ theorem: ∮

C
A · ds =

∫ ∫

S
(∇×A)dS

13
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The importance to make a distinction between rotational and irrotational

flows lies in the fact that irrotational flows are much easier to analyze than

rotational flows even though the applications of irrotational flow are limited.

Once the fluid domain has been described, see how to analyze the flow

field. In the following section, it will be shown how a vector field can be

expressed by means of a scalar potential component and a vector potential

component by the Helmholtz decomposition.

1.2 The Helmholtz theorem

In a hydrodynamic context, Helmholtz showed in 1858 that any vector

field that vanishes at infinity and has other requirements about its smooth-

ness and its existence domain can be decomposed into two parts: one is an

irrotational component which can be expressed by the gradient of a scalar

function and the other is a rotational part which can be expressed by the

curl of the vector function. This is the Helmholtz theorem which has very

important applications in many physical problems, like the simulation of

incompressible fluids, or in electromagnetism (Maxwell’s equations).

As shown by Gui and Dou [29], the Helmholtz theorem states that if A

is an arbitrary continuous vector function with all the second order partial

derivatives in free space, and its surface integration or its any partial deriva-

tive is zero at infinity, then this vector function can be defined as the sum of

the gradient of a scalar function and the curl of a vector function, that is

A = ∇φ + ∇ × Ψ (1.5)

with

φ(r) =

∫

V

∇ · A(r)
4π|r′| dV (1.6)

14
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Ψ(r) =

∫

V

∇× A(r)

4π|r′| dV (1.7)

where 1/(4π|r′|) is the Green’s function. Equations (1.6) and (1.7) can be

derived by means of the Green’s Identities, Ψ is the vector potential or stream

function and φ is the scalar potential.

Note that the functions into the volume integral must be evaluated at the

position r, referring from from the origin, then r coincides with the evaluation

point of φ (or Ψ), while r′ is the relative position between the evaluation point

and any point swept by the volume integral.

Figure 1.2: The fluid domain considered in the derivation of the Green’s Theorem.

Observe that, for the vector function A, the following vector identities

result to be valid

∇ · (∇φ + ∇ × Ψ) → ∇2φ = ∇ · A (1.8)

∇ × (∇φ + ∇ × Ψ) → ∇(∇ ·Ψ) − ∇2Ψ = ∇ × A (1.9)
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where, the following analytical properties hold:

∇ · (∇ × Ψ) = 0 (1.10)

∇ × (∇φ) = 0 (1.11)

Note that, for the Helmholtz decomposition, the choice of Ψ can be arbi-

trary, therefore Ψ may be solenoidal or not divergence-free. Instead, as it is

shown in further on, the characteristics of the vector A depends on another

considerations.

Now, if the vector potential Ψ and the vector function A are solenoidal,

equations (1.8) and (1.9) become

∇2φ = 0 (1.12)

− ∇2Ψ = ∇ × A (1.13)

Equations (1.12) and (1.13) are Laplace’s equation and Poisson’s equation,

respectively. Therefore, the problem can be worked out by solving one

Laplace’s equation for the irrotational component and one Poisson’s equation

for the solenoidal component. Equations (1.6) and (1.7) are the solutions of

Laplace’s equation and Poisson’s equation, respectively.

1.3 The mass conservation and the vorticity

evolution equations

Consider the conservation equation:

∂ρ

∂t
+∇ · (ρU) = 0 (1.14)

For incompressible flow, ρ(x, y, z, t) is constant. Therefore,

∂ρ/∂t = 0 (1.15)
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and

∇ · (ρU) = ρ ∇ · U (1.16)

Then, the governing continuity equation for a fluid with a constant density

is expressed in differential form as:

∇ · U = 0, (1.17)

where ∇ · U is physically the time rate of change of the volume of a moving

fluid element per unit volume.

The vorticity evolution equation is derived from the momentum balance

equation of the NS,

∂U

∂t
+ U · ∇ U = −∇p

ρ
+ ν∇2U (1.18)

where ρ is the fluid density, p is the pressure and ν is the cinematic viscosity.

Taking the curl of above equation, the resulting equation for the vorticity

evolution in the domain is

∇× ∂U

∂t
+∇× (U · ∇ U) = −∇×

(∇p
ρ

)
+ ∇× (ν∇2U) (1.19)

For fixed reference frames, the first term on the left side becomes

∇× ∂U

∂t
=
∂(∇× U)

∂t
=
∂ω

∂t
(1.20)

Similarly, the last term on the right side becomes

∇× (ν∇2U) = ν∇2ω (1.21)

Now, since there exists the identity ∇×∇ · = 0, the pressure term vanishes,

provided that the density is uniform

∇×
(∇p
ρ

)
= 0 (1.22)
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The inertial term U · U can be rewritten as

∇× (U · ∇ U) = ∇
(
U2

2

)
− U × ω (1.23)

and then the term ∇× (U · ∇ U) can be written

∇× (U · ∇ U) = ∇×∇
(
U2

2

)
−∇× (U × ω) (1.24)

= U · ∇ ω − ω · ∇ U + ω(∇ · U) + U(∇ · ω) (1.25)

= U · ∇ ω − ω · ∇ U (1.26)

Putting everything together, the vorticity equation results

∂ω

∂t
+ U · ∇ ω = ω · ∇ U + ν∇2ω (1.27)

where the first term ω · ∇ U on the right hand side represents the vorticity

stretching (or how the strength and magnitude of the vorticity changes as

it is exposed to velocity gradients in the fluid field). In chapter 2 it will be

discussed that the stretching term may be neglected in certain applications.

Since the flow is assumed to be inviscid (Re → ∞), then the vorticity

can be rewritten as
∂ω

∂t
+ U · ∇ ω = ω · ∇ U (1.28)

Observe that, for very high values of the Reynolds, the vorticity that is

created at the body surface is convected along with the flow much faster

than it can be diffused out across the flow. So the vorticity remains in

the confines of the thin region that includes the boundary layer and the

trailing wake. The fluid in the outer part of the fluid domain is effectively

irrotational. However, since the fluid has been assumed to be ideal in this

thesis, the vorticity is only confined in the wake: the boundary layer does

not exist in ideal fluids.
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Recall, now, that the evolution equation for a material line element δℓ

can be written as follow:
Dδℓ

Dt
= δℓ · ∇ U (1.29)

It is clear that vortex lines move as material lines for inviscid flows.

Recalling, moreover, that a vortex tube is defined as the set of vortex

lines that perforate a given surface part S and the circulation of a vortex

tube is the same for all oriented surface patches that define the vortex tube

due to free divergence of ω, the circulation of a vortex tube is conserved for

inviscid flows. Vortex tubes move as material volumes and they conserve

their circulation.

1.4 The Laplace’s and Poisson’s equations

Since the velocity U and the vorticity ω must satisfy the mass conservation

(1.17) and the vorticity evolution laws (1.28) it can be demonstrated that the

velocity vector field can be decomposed by means of the Helmholtz theorem

and that the velocity can be calculated using equations (1.12) and (1.13)

instead of the (1.17) and the (1.28). Then the scalar potential component

and the vector potential component of the velocity vector are now defined.

Into the equation (1.30) φ is the scalar potential for the velocity Uφ in the

flow domain, Ψ is the vector potential or stream function for the velocity

UΨ in the flow domain, Uφ is the velocity component bound to the scalar

potential function and UΨ is the velocity component bound to the stream

function.

U(r, t) = Uφ(r, t) + UΨ(r, t) = ∇φ + ∇×Ψ (1.30)

UΨ = ∇×Ψ (1.31)
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Uφ = ∇φ (1.32)

Observe that the the definition of Ψ is statement of the mass conservation.

In fact, UΨ automatically satisfies the continuity equation, since the gradient

of the curl of any vector is identically zero (see equation (1.10)). From a

physical point of view, the lines of a constant Ψ represent stream lines, and

the difference in the values of Ψ between two streamlines gives the volumetric

flow rate between the two.

One important consequence of irrotationality is the existence of a velocity

potential. Indeed, the equation ξ = ∇× U = 0 is a necessary and sufficient

condition for the existence of a potential φ such that

Uφ = ∇φ (1.33)

where φ(x, y, z, t) is the scalar potential for the velocity in the flow domain.

This scalar potential consents the substitution of a three-component vector

by a single scalar as the principle unknown in theoretical investigation.

The velocity potential is analogous to stream function in the sense that

derivatives of φ yield the velocity but there are distinct differences between

φ and Ψ. First, the velocity is obtained by differentiating φ in the velocity

direction, whereas Ψ in the direction normal to the velocity direction. Second,

the velocity potential is defined only for irrotational flow, whereas the stream

function can be defined for rotational or irrotational flows.

Substituting the velocity potential relationship into the mass conservation

law (1.17), the resulting equation simplifies to:

∇ · (∇φ+∇×Ψ) = ∇ · (∇φ) = ∇2φ = 0 (1.34)

Then the Laplace’s equation is indeed bound to the mass conservation. Note

that Laplace’s equation is a linear differential equation and solutions of
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Laplace’s equation are called harmonic functions: this is an elliptic differ-

ential equation that results in a boundary-value problem. Since the fluid’s

viscosity has been neglected, the no-slip boundary condition on a solid-fluid

boundary cannot be enforced.

Remember that the vorticity field ω(r, t) is defined as the curl of the

velocity:

∇× U = ω (1.35)

Then it is possible to use ω into the (1.13), this means that the Poisson’s

equation relates the vector potential to the vorticity. Finally the equations

to be solved are:

∇2φ = 0 (1.36)

∇2Ψ = −ω (1.37)

Moreover, the fact that Laplace’s equation is linear is very important,

because the superposition of any solution of a linear differential equation is

also a solution of Laplace’s equation. This fact implies that the solution

of a complicated flow pattern for an incompressible flow can be obtained

as the sum of a number of elementary incompressible flow solutions.This

consideration is the basis of the panel methods.

However it must be done a clarification about the wake and the linearity

of the above equation. The wake surface in panel methods is part of the

boundary, then it has a key role in determining the potential function. If the

shape of the wake is already known there are no problems in determining

linearly the velocity field. But the most common problems concern bodies of

various geometries about which it is desired to know the velocity field and

the wake. The Helmholtz conservation theorems about circulation establish

a link between velocity field and the wake, thus to calculate the velocity it is
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needed to know the wake shape and its vorticity distribution which are in turn

linked to the unknown velocity. This is evidently a non linearity, but it can be

by-passed. Prandtl, in the cases of wings, simply nailed down the wake to a

plane, more recent algorithms take this great intuition of the aerodinamicist

as starting guess within iterative procedures, thus the wake data are known

and the velocity field can be calculated, although by attempts.

1.5 The velocity induced by vorticity: the

Biot-Savart law

The velocity induced by a vorticity distribution (see figure 1.3) is both an

example about how to solve the Poisson’s equation and an elementary flow

field to be used later. Consider Poisson’s equation ω = −∇2Ψ. The solution

of this equation, using Green’s theorem, is

Ψ =
1

4π

∫

V

ω

|r0 − r1|
dV (1.38)

where Ψ is evaluated at point P which is a distance r0 from the origin and

is obtained by integration of the vorticity at point r1 within the volume

V .Equation above and equation (1.7) are the same relationship. Clearly, the

velocity is the curl of Ψ

UΨ =
1

4π

∫

V

∇× ω

|r0 − r1|
dV (1.39)

Consider, then, an infinitesimal piece of the vorticity filament ω. Select

the cross section area dS so that it is normal to ω and the direction dℓ on

the filament is

dℓ =
dℓ

ω
ω (1.40)
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Figure 1.3: the velocity at point P induced by a vortex distribution.
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Since the circulation Γ and dV are, respectively

Γ = ω dS (1.41)

dV = dS dl (1.42)

then the integral term becomes

∇× ω

|r0 − r1|
= ∇× Γ

dℓ

|r0 − r1|
= Γ

dℓ× (r0 − r1)

|r0 − r1|3
(1.43)

By substituting the above result in equation (1.39), resulting equation is

the Biot-Savart law, which states

UΨ =
1

4π

∫

V

Γ
dℓ× (r0 − r1)

|r0 − r1|3
dV (1.44)

or in differential form

dUΨ =
Γ

4π

dℓ× (r0 − r1)

|r0 − r1|3
(1.45)

In case of a volume distribution of vorticity, a similar manipulation of equa-

tion (1.39) leads to the following result

UΨ =
1

4π

∫

V

ω × (r0 − r1)

|r0 − r1|3
dV (1.46)

1.5.1 The velocity induced by a straight vortex

segment

The first one to make use of a vortex filament concept in the analysis of

inviscid, incompressible flow was Helmholtz, who established several basic

principles known as Helmholtz theorems. First, the strength of a vortex

filament is constant along its length. Second, a vortex filament cannot end
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in a fluid: it must extend to the boundaries of the fluid which may be ±∞
or form a closed path.

The derivation of the velocity induced by a straight vortex segment dℓ

is based on the the Biot-Savart law. As a vortex line cannot start or end

in a fluid, the contribution of a segment is one of a section of a continuous

vortex line. Moreover, the components of the velocity induced by this vortex

segment will be only tangential components.

Let r1 and r2 be the positions of the two edges of the vortex segment.

The vector connecting the edges is

r0 = r2 − r1 (1.47)

Then, the distance d and the cosines of the angles β1 and β2 are

d =
|r1 × r2|

|r0|
(1.48)

cos β1 =
r0 · r1
|r0| |r1|

(1.49)

cos β2 =
r0 · r2
|r0| |r2|

(1.50)

The velocity UΨ1,2
has the direction normal to the plane defined by the point

P and the vortex edges 1, 2 and the directional vector is given by

r1 × r2
|r1 × r2|

(1.51)

By substituting these quantities, the induced velocity is

UΨ1,2
=

Γ

4π

r1 × r2
|r1 × r2|

r0 ·
(
r1
r1

− r2
r2

)
(1.52)

Constant-strength vortex line segments can be used to model the wing or the

wake for lifting flows, as provided in chapters 2 and 3.
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1.6 The boundary conditions

Consider the incompressible flow fields over different aerodynamic bodies.

It is clear that each flow is going to be distinctly different because of the

different geometry. But these different flows are all governed by the same

equations: ∇2φ = 0 and ∇2Ψ = −ω. How, then, can the exact solution be

found? The answer to these questions lies in the fact that, as known, in every

single mathematic model, the boundary conditions must be considered like

integral part of the same model. Moreover, in this unsteady flow problem,

the unsteady nature of the boundary conditions must be considered for the

solution uniqueness for all times. This unsteady nature can be due to changes

in time of the velocity vector of the uniform flow that collides the body, or

changes in time of the position and the form of the body surface, or changes

in times of the form of possible flexible surfaces like the wake and the surfaces

of separation between different flows. These changes in time require the time

updating of the boundary conditions.

Therefore, the boundary conditions need to be specified on all solid sur-

face and at infinity, and updated in time. Moreover, to analyze aerodynamic

bodies, a wing trailing edge condition (Kutta condition) that imposes a con-

dition of smoothness on the flow field at the trailing edge is necessary .

1.6.1 Infinity boundary conditions

Since the boundary is located far away so that the flow properties on

the boundary are not influenced by the body, then it is at infinity where

the disturbances due the body moving through a fluid that initially at rest

decays to zero in all directions. Hence, at infinity,

U(r, t) = ∇φ + ∇×Ψ = U∞ (1.53)
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These are the boundary conditions on velocity at infinity.

1.6.2 Wall boundary conditions

Regarding the wall boundary condition, since the body has a solid surface,

then the flow can not penetrate the surface. For viscid flows, the velocity is

zero at the surface due to the friction between the fluid and the solid surface.

However, since the flow is assumed to be inviscid, the velocity at the surface

can be finite and tangent to the surface because the flow cannot penetrate

the surface or not tangent to the surface for the case of a solid boundary

with transpiration. For this work, it is assumed the case of solid surfaces

without transpiration. Clearly, this wall tangency condition implies a zero

component of velocity normal to the surface.

Let n be a unit vector normal to the surface. In terms of the vector and

scalar potentials, the flow tangency conditions can be written as:

U · n = (∇φ + ∇×Ψ) · n = 0 (1.54)

Observe that only the normal velocity boundary condition is applied at the

wall, because of the inviscid flow assumption. For the viscid flows, the con-

ditions to apply to the body surface are two: one is the normal velocity

boundary condition, other is the tangent velocity condition.
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1.7 The wing trailing edge Kutta condition

The net force produced by surfaces with sharp geometric cusps when the

body moves relative to a fluid, is due to the pressure distribution over the

body surface. Flows from moving around these cusps are impeded by the

fact that these requires infinite pressure stresses and therefore the flows tend

to leave smoothly the sharp corner and shed a trailing shear wake. Since the

flow is assumed to be inviscid and irrotational, a Kutta condition must be

applied to all wing trailing edges for the physicalness of the solution. In fact,

the Kutta condition states that the flow leaves the sharp trailing edge of an

airfoil smoothly and the velocity there is finite.

In the case of aerodynamic bodies, the capacity to manage the following

Kutta wake, if necessary, its fluctuations cover an important role, so the wing

trailing edge Kutta condition must be applied in time.

Moreover, since the trailing edge angle is finite, the normal component

of the velocity, from both sides of the airfoil, must vanish. For a continuous

velocity, this is possible if the pressure difference is zero:

∆p
T.E.

= 0 (1.55)

this is the Kutta condition which requires that there is no pressure jump

across the trailing edge.

Additionally, this can be obtained by requiring that the flow above the

wing be vorticity free. The Kutta condition along the trailing edge, so that

the vorticity component parallel to the trailing edge (γ
T.E.

) is zero, results:

γ
T.E.

= 0 (1.56)
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In order to prescribe the streamwise vorticity release at the trailing edge,

a linearized version of the pressure continuity at the trailing edge is used

φupper − φlower = ∆φwake (1.57)

Here, the subscripts upper and lower refer to points on the upper and lower

surfaces of the trailing edge of the wing. The flow field without and with the

imposition of the Kutta condition is presented in figure 1.4.

Figure 1.4: the flow field at the wing trailing edge without (left) and with (right)
the imposition of the Kutta condition.

For unsteady flows, a time dependent component of the Kutta condition is

also enforced. This additional condition requires that any increase in bound

vorticity on the wing must be balanced by an equivalent increase in vorticity

in the wake. This increased vorticity is oriented in the direction parallel to

the trailing edge. The formal statement of the condition is the combined

change with respect to time of the wing bound circulation and the wake

circulation add to zero:

[
dΓspan,wing

dt

]
= −

[
dΓspan,wake

dt

]
(1.58)

where Γ represents the circulation strength of the wing and wake. Hence,
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the rate at which body vorticity increases must be equal and opposite to the

rate of vorticity shed into the wake.

1.8 The Unsteady Bernoulli equation

The pressure field can be computed by Bernoulli equation, once the flow

field is determinate. The Bernoulli equation is the most widely used equa-

tion in fluid mechanics, and assumes frictionless flow with no work or heat

transfer.

Since this thesis presents a potential-vorticity approach, the applicable

unsteady Bernoulli equation will be briefly derived, starting from the incom-

pressible Euler equations:

∂U

∂t
+ U · ∇ U = −∇p

ρ
(1.59)

All space excluding the trailing vortex wake region has zero vorticity, there-

fore the resulting equation is:

∂U

∂t
+

1

2
∇|U |2 = −∇p

ρ
(1.60)

By using the Helmholtz decomposition, the above equation becomes:

∂(∇φ) + ∂(∇×Ψ)

∂t
+

1

2
∇|∇φ+∇×Ψ|2 = −∇p

ρ
(1.61)

Collecting similar terms, and re-arranging, the above equation results

∂(∇φ)
∂t

+
∂(∇×Ψ)

∂t
+

1

2
∇ |∇φ+∇×Ψ|2 + ∇p

ρ
= 0 (1.62)

Now, integrating the Bernoulli equation along the streamline from surface

point x1, to a farfield reference point at ∞ where the velocity is zero since

the body moves in the domain, and p = p∞ result in:
∫ px1

∞

∂(∇×Ψ)

∂t
dC +

(
∂φ

∂t x1
+

1

2
|∇φ+∇×Ψ|2x1

)
=
p∞ − px1

ρ
(1.63)
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Therefore, the term ∂φ
∂t
, defined in an Eulerian reference frame, can be com-

puted by converting of a body Lagrangian reference frame:

∂φ

∂t
=
Dφ

Dt
− U · ∇φ (1.64)

The overall unsteady Bernoulli equation, used to determine the forces and

pressures on the body, results:

∫ px1

∞

∂(∇×Ψ)

∂t
dC+

Dφ

Dt
− U ·∇φ+1

2
|∇φ+∇×Ψ|2x1 =

p∞ − px1
ρ

(1.65)

The importance of the unsteady term due to domain vorticity in the compu-

tation of the pressure will be discussed below. Now, note that this unsteady

term is difficult to handle in the form:

∫ px1

∞

∂(∇×Ψ)

∂t
· dC (1.66)

So, by considering the contribution of the vortex wake as an analogous con-

tribution due to a doublet sheet, one can obtain:

∫ px1

∞

∂(∇×Ψ)

∂t
· dC =

∫ px1

∞

∂(∇ϕ)
∂t

|wake · dC (1.67)

Integrating the expression for the wake potential ϕ is no more difficult to

handle: ∫ px1

∞

∂ϕ

∂t
|wake · dC =

∂ϕ

∂t
=
Dϕ

Dt
− U · ∇ϕ (1.68)

where, ∇ϕ is the velocity due to the wake. Therefore, the overall unsteady

Bernoulli equation is:

Dϕ

Dt
+
Dφ

Dt
− U · ∇(φ+ ϕ) +

1

2
|∇φ+∇ϕ|2x1 =

p∞ − px1
ρ

(1.69)
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1.9 Computation of forces and moments

Once the pressure field has been determined by Bernoulli equation, the

aerodynamic forces and moments on the lifting body can be computed. These

quantities can seem complex but, in all cases, they are due to only two basic

sources over the body surface:

• pressure distribution;

• shear stress distribution.

It’s well-known that the only way nature has to communicate an aerodynamic

force to a solid body moving through a fluid, is through the pressure and shear

stress distributions which exist on the surface. Pressure and shear stress have

the same dimension (force per unit area) and they vary along the surface.

The first source acts normally to the body surface. The second source acts

tangentially and it is due to the frictional effect of the flow “rubbing” against

the surface as it moves around the body. The shear stress τw is defined as the

force per unit area acting tangentially on the body surface due to friction.

The net effect of the pressure and shear stress distributions integrated over

the complete body surface is a resultant aerodynamic force F and momentM

on the body. Therefore, from the unsteady Bernoulli equation, the resultant

force and moment can be computed as below:

F (t) =

∫

S(t)

(p∞ − px1(t))n dS(t) (1.70)

M(t) =

∫

S(t)

r × [(p∞ − px1(t)) n] dS(t) (1.71)

where r must be specified where starts from since moment of force varies

with the reference point of the reference frame. In aeronautical practice the

most common choice is the aerodynamic focus, but it is not the only choice.
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The resultant force can be split in two component: lift L and drag D.

The first is defined as the component of F perpendicular to the relative wind.

The second is defined as the component of F parallel to the relative wind.

Consider, now, viscous effects on drag. The presence of friction in a flow

produces two sources of drag:

• skin friction drag Df due to the shear stress at the wall;

• pressure drag due to flow separation Dp, called form drag.

Since the viscosity has been neglected in this work, the total drag cannot be

satisfactory determined. In fact, it is possible to compute only the pressure

force with inviscid theory. However, there exists a source of drag induced by

lift Di that can be computed in inviscid theory too.

1.9.1 Pressure, force and moment coefficients

In fluid dynamics, it is common to use the pressure coefficient rather

than pressure. The pressure coefficient Cp is a dimensionless pressure and its

usefulness is known in aerodynamics, from subsonic to hypersonic flow. The

pressure coefficient is defined as

Cp =
p− p∞
q∞

=
p− p∞
1
2
ρ∞U2

∞

(1.72)

The pressure coefficient is an important quantity because the distribution of

Cp over the body surface leads directly to the value of the lift coefficient CL

(that will be defined later) and the calculation of the effect of Mach number

M∞ on CL by the Prandtl-Glauert rule.

Similarly, the dimensional lift, drag, and moment coefficients can be de-
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fined from dimensional analysis, as

CL =
L

q∞S
(1.73)

CD =
D

q∞S
(1.74)

CM =
M

q∞Sc
(1.75)

where S and c are the lifting body area and chord of reference, respectively.
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Chapter 2

PANEL METHODS

In the previous chapter, the fundamental fluid dynamic equations and

the conditions leading to the simplified ideal flow problem were formulated

and discussed. Now, the emphasis is placed on the theory and the numerical

procedure used to solve regions of the flow field assumed to be inviscid,

incompressible and also irrotational. Therefore, the elementary solutions of

Laplace equation and the basic methodology for obtaining the solutions of

the more complex potential flow problems will be described in this chapter.

2.1 Basic solutions of Laplace equation

Laplace equation over bodies may be solved by the distribution of elemen-

tary solutions whose strengths are obtained by enforcing the impermeability

flow or a fixed normal flow condition on the solid boundaries. But, when the

complexity of the method increases, the calculation becomes more compli-

cate. Therefore, some typical numerical elements upon which some numerical

solutions are based, will be presented in this section. Particularly, attention is

addressed to some three-dimensional constant-strength singularity elements
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[14][34][25].

In the general case, the potential may be integrated over a curve, surface

or volume, in order to generate the corresponding singularity elements. In

these cases, it must not be addressed to strength (like in the case of point

elements), but strength density per unit of length, area or volume, respec-

tively.

Particularly, it is possible to imagine elementary solutions of Laplace

equation that are distributed over plane geometric elements oriented in space:

these elements may be quadrilateral or triangular. Therefore, let σ be the

strength per unit of area for the distributed source, and analogously let µ for

the distributed doublet. The validity of the equations which will be derived

will be related to the plane quadrilaterals, but these may be applied also to

triangular elements which are plane by definition.

Before to describe the three-dimensional constant-strength singularity el-

ements, the free stream solution of Laplace equation will be briefly discussed.

The most simple solution of Laplace equation regards a uniform free

stream. In fact, equation (1.34) is certainly fulfilled by the follow poten-

tial

φ(x, y, z) = u∞x+ v∞y + w∞z (2.1)

which represents a uniform flow field

U =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= (u∞, v∞, w∞) (2.2)

2.1.1 Quadrilateral source

Begin to consider a surface element bounded by four straight lines, with a

constant-strength source distribution σ (see figure 2.1). Consider a reference

frame with origin in the quadrilateral center and with z axis directed along
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the normal to the quadrilateral. Thus, the potential in any point P is given

by:

φ(x, y, z) = − σ

4π

∫ ∫

S

dS√
(x− x0)2 + (y − y0)2 + z2

(2.3)

Equation (2.3) may be rewritten by means of the Hess and Smith [31] pro-

z

y
x

(x ,y ,0)1 1

(x ,y ,0)2 2

(x ,y ,0)3 3

(x ,y ,0)4 4

P (x,y,z)

s(x,y)=cost

Figure 2.1: quadrilateral constant-strength source element.

cedure in function of the coordinates of the four quadrilateral vertexes:

φ(x, y, z) = − σ

4π

∑

(ij)=(1,2,3,42,3,4,1)

x̂i ŷij − ŷi x̂ij
dij

ln
ri + rj + dij
ri + rj − dij

+

−|z| σ
4π

∑

(ij)=(1,2,3,42,3,4,1)

[
tan−1

(
mijei−hi

zri

)
−tan−1

(
mijej−hj

zrj

)]
(2.4)

from which the velocity components derives:

u(x, y, z) = σ
4π

∑
(ij)=(1,2,3,42,3,4,1)

ŷij
dij

ln
ri+rj−dij
ri+rj+dij

(2.5)

v(x, y, z) = σ
4π

∑
(ij)=(1,2,3,42,3,4,1)

−x̂ij
dij

ln
ri+rj−dij
ri+rj+dij

(2.6)

w(x, y, z) = σ
4π

∑
(ij)=(1,2,3,42,3,4,1) tan

−1
(
mijei−hi

zri

)
+

− σ
4π

∑
(ij)=(1,2,3,42,3,4,1) tan

−1
(
mijej−hj

zrj

)
(2.7)

37



PANEL METHODS

where

x̂i = x− xi i = 1, 2, 3, 4

ŷi = y − yi i = 1, 2, 3, 4

x̂j = x− xj j = 2, 3, 4, 1

ŷj = y − yj j = 2, 3, 4, 1

x̂ij = xj − xi (ij) = (1, 2, 3, 42, 3, 4, 1)

ŷij = yj − yi (ij) = (1, 2, 3, 42, 3, 4, 1) (2.8)

dij =
√
(xj − xi)2 − (yj − yi)2 (ij) = (1, 2, 3, 42, 3, 4, 1)

mij = (yj − yi)/(xj − xi) (ij) = (1, 2, 3, 42, 3, 4, 1)

ri =
√
(x− xi)2 + (y − yi)2 + z2 i = 1, 2, 3, 4

ei = (x− xi)
2 + z2 i = 1, 2, 3, 4

hi = (x− xi)(y − yi) i = 1, 2, 3, 4

Equations (2.5) and (2.6) show how the velocity components u and v are

defined everywhere except on the quadrilateral boundary. For the compo-

nent w, equation (2.7) shows that two limit cases exist when z = 0: one

discontinuity when the point P lies on the quadrilateral

w(z = ±0) =
±σ
2

(2.9)

and a null value when P is outside of the quadrilateral

w(z = ±0) = 0 (2.10)

Figure 2.2 is based on the implementation of the equations (2.3), (2.5), (2.6),

(2.7) and it shows the flow field induced by a quadrilateral source.
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Figure 2.2: quadrilateral source - uniform velocity vector and isopotential contour.

2.1.2 Quadrilateral doublet

Consider a quadrilateral element with a constant-strength doublet distri-

bution which points in the z direction, as showed in figure 2.3. Similar to

the source element, the velocity potential may be obtained by integrating the

point elements:

φ(x, y, z) = − µ

4π

∫

S

z dS

[(x− x0)2 + (y − y0)2 + (z − z0)2]3/2
(2.11)

Following again the Hess and Smith procedure, one may obtain also this
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z

y
x

(x ,y ,0)1 1

(x ,y ,0)2 2

(x ,y ,0)3 3

(x ,y ,0)4 4

P (x,y,z)

m(x,y)=cost

Figure 2.3: quadrilateral doublet element.

potential in function of the quadrilateral vertex coordinates:

φ(x, y, z) =
µ

4π

∑

(ij)=(1,2,3,42,3,4,1)

tan−1

(
mijei − hi

zri

)
+

− µ

4π

∑

(ij)=(1,2,3,42,3,4,1)

tan−1

(
mijej − hj

zrj

)
(2.12)

and the corresponding velocity components:

u(x, y, z) =
µ

4π

∑

(ij)=(1,2,3,42,3,4,1)

−zŷij(ri + rj)

rirj {rirj − [x̂ix̂j + ŷiŷj + z2]} (2.13)

v(x, y, z) =
µ

4π

∑

(ij)=(1,2,3,42,3,4,1)

zx̂ij(ri + rj)

rirj {rirj − [x̂ix̂j + ŷiŷj + z2]} (2.14)

w(x, y, z) =
µ

4π

∑

(ij)=(1,2,3,42,3,4,1)

[x̂j ŷi − x̂iŷj](ri + rj)

rirj {rirj − [x̂ix̂j + ŷiŷj + z2]} (2.15)

Observe that the doublet potential may be developed from the source
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Figure 2.4: quadrilateral doublet - uniform velocity vector and isopotential con-
tour.

way because

φdoublet = − ∂

∂n
φsource (2.16)

As the source element, equation (2.12) shows that there exists a discontinuity

when z = 0:

φ(z = ±0) =
±µ
2

(2.17)

Similar to the previous case, the potential and velocity fields illustrated in

figure 2.4 are based on the implementation of the obtained equations.
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2.1.3 Constant doublet panel equivalence to vortex ring

Continue to consider the quadrilateral doublet with constant strength µ

with its potential which may be written as

φ = − µ

4π

∫

S

z

r3
dS (2.18)

where r =
√
(x− x0)2 + (y − y0)2 + z2.

The velocity is

U = ∇φ = − µ

4π

∫

S

∇ z

r3
dS =

=
µ

4π

∫

S

[
i
∂

∂x0

z

r3
+ j

∂

∂y0

z

r3
+ k

(
1

r3
− 3z

r5

)]
dS (2.19)

where

∂

∂x

1

r3
= − ∂

∂x0

1

r3
(2.20)

∂

∂y

1

r3
= − ∂

∂y0

1

r3
(2.21)

Now, consider a vortex filament of circulation Γ along the curve bounding

the quadrilateral, labeled as C (figure 2.5). Clearly, the velocity field induced

by this filament is given by the Biot-Savart law (see chapter 1) as

U =
Γ

4π

∫

C

dℓ× r

|r|3 (2.22)

Thus, for dℓ = (dx0, dy0) and r = (x − x0, y − y0, z), the velocity results

expressed as following

U =

∫

C

{
i
z

r3
dy0 − j

z

r3
dx0 + k [(y − y0)dx0 − (x− x0)dy0]

}
(2.23)

At this point, recall Stokes theorem for a vector A

∫

C

A · dℓ =
∫

S

n · ∇ × AdS (2.24)
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With n = k above equation becomes

∫

C

A · dℓ =
∫

S

(
∂Ay
∂x0

− ∂Ax
∂y0

)
dS (2.25)

Applying Stokes theorem on the above velocity integral, one gets

U =
Γ

4π

∫

S

[
i
∂

∂x0

z

r3
+ j

∂

∂y0

z

r3
− k

(
∂

∂x0

x− x0
r3

+
∂

∂y0

y − y0
r3

)]
dS (2.26)

Therefore, if Γ = µ the velocity field induced by the vortex ring is identical

to the velocity of the doublet quadrilateral (see also figure 2.4).

z

y
x

(x ,y ,0)1 1

(x ,y ,0)2 2

(x ,y ,0)3 3

(x ,y ,0)4 4

P (x,y,z)

m(x,y)=cost

z

y
x

(x ,y ,0)1 1

(x ,y ,0)2 2

(x ,y ,0)3 3

(x ,y ,0)4 4

P (x,y,z)

m
G

(x,y)= (x,y)

<=>

Figure 2.5: quadrilateral doublet element and its vortex ring equivalent.
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2.2 Panel method formulation

For most engineering applications the problem requires a solution in a

fluid domain. Usually this domain contains a solid body with additional

boundaries that may define an outer flow boundary.

Figure 2.6: The fluid domain considered in the derivation of the Green’s Theorem.

Consider the scalar potential governed by Laplace’s equation:

∇2φ = 0. (2.27)

The mathematical problem defined by Laplace’s equation with the boundary

conditions is described schematically by figure 2.6. Laplace’s equation must

be solved for an arbitrary body with boundary SB enclosed in a volume V ,

with the outer boundary S∞ (with the normal defined so that it always points

outside the region of interest V ) [14][34][25][41][30].

Inside the domain V the general solution of Laplace’s equation is possible

to obtain by means of the Green’s Identity that follows from the divergence
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theorem that is
∫ ∫

S

A · ndS =

∫ ∫ ∫

V

∇ · AdV (2.28)

Particularly, consider the vector

A = φ1∇φ2 − φ2∇φ1 (2.29)

where φ1 and φ2 are two scalar functions of position. Applying the divergence

theorem to the vector A, results:
∫ ∫

S

(φ1∇φ2−φ2∇φ1)·ndS =

∫ ∫ ∫

V

(
φ1∇2φ2−φ2∇2φ1

)
dV (2.30)

This equation is the second of Green’s Identities where the surface integral is

taken over all the boundaries S, including a wake sheet model SW (necessary

to impose the Kutta condition) and the outer boundary S∞:

S = SB + SW + S∞ (2.31)

Let one set

φ1 =
1

r
(2.32)

and

φ2 = φ (2.33)

where φ is the potential of the flow in V , and r is the distance from a point

P (x, y, z) is another potential that satisfies Laplace’s equation.

This way the second Green’s Identity results:
∫ ∫

S

(
1

r
∇φ− φ∇1

r

)
· ndS =

∫ ∫ ∫

V

(
1

r
∇2φ− φ∇21

r

)
dV (2.34)

When the point P is outside of V , equation (2.34) becomes

P /∈ V =⇒
∫ ∫

S

(
1

r
∇φ− φ∇1

r

)
· ndS = 0 (2.35)
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In the particular case where the point P is inside the region, the point P must

be excluded from the region of integration and it is surrounded by a small

sphere of radius ǫ. In the remaining region V outside of the sphere ǫ both φ1

and φ2 satisfy Laplace’s equation. Therefore, equation (2.34) becomes

P ∈ V =⇒
∫ ∫

S+Sǫ

(
1

r
∇φ− φ∇1

r

)
· ndS = 0 (2.36)

Now introduce a spherical coordinate system at P to obtain the integral over

the sphere. Since the vector n points inside the small sphere, equation (2.36)

becomes
∫ ∫

S

(
1

r
∇φ− φ∇1

r

)
· ndS −

∫ ∫

Sǫ

(
1

r

∂φ

∂r
+
φ

r2

)
dS = 0 (2.37)

The integration over the surface of the spherical exclusion region reduces to:

∫ ∫

Sǫ

(
φ

r2

)
dS = 4πφ(P ) (2.38)

Finally, equation (2.37) becomes

φ(P ) =
1

4π

∫ ∫

S

(
1

r
∇φ− φ∇1

r

)
· ndS (2.39)

Equation (2.39) is the third Green’s Identity that gives the value of the φ(P )

at any point in the flow, within the region V , in terms of the values of the φ

and ∂φ/∂n on the boundaries S.

When the flow of interest occurs inside the boundary of the SB and hence

the resulting internal potential is φi, the point P inside the region V is outside

of SB and applying equation (2.35), results

0 =
1

4π

∫ ∫

SB

(
1

r
∇φi − φi∇

1

r

)
· ndS (2.40)

where n points out from SB.
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By adding equations (2.39) and (2.40), we obtain the formula that in-

cludes the influence of the inner potential:

φ(P ) =
1

4π

∫ ∫

SB

[
1

r
∇(φ− φi)− (φ− φi)∇

1

r

]
· ndS+

+
1

4π

∫ ∫

SW+S∞

(
1

r
∇φ− φ∇1

r

)
· ndS (2.41)

Regarding the contribution of the S∞ integral in equation (2.41), this can be

defined as

φ∞(P ) =
1

4π

∫ ∫

S∞

(
1

r
∇φ− φ∇1

r

)
· ndS (2.42)

This contribution depends on the reference frame: for example, this potential

can be selected as a constant in the region in an inertial system where the

body moves through an otherwise stationary fluid. Furthermore, since the

wake surface is assumed to be thin, ∂φ/∂n is continuous across it. By means

of these assumptions, equation (2.41) becomes

φ(P )=φ∞(P )+
1

4π

∫ ∫

SB

[
1

r
∇(φ−φi)−(φ−φi)∇

1

r

]
· ndS+

− 1

4π

∫ ∫

SW

(φU − φL)n · ∇1

r
dS (2.43)

This formula provides the value of φ(P ) in terms of φ and ∂φ/∂n on the

boundaries. One can observe that the flow problem reduces to determining

the value of φ and ∂φ/∂n on the boundaries.

When the point P lies on the boundary SB, the potential φ(P ) becomes

singular. Therefore, in order to exclude the point from V , the integration

is carried out only around the surrounding hemisphere. Equation (2.43)
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becomes

φ(P ∈ Sb) = φ∞(P ) +
1

4π

∫ ∫

SB

1

r
n · ∇(φ− φi)dS+

− 1

4π

∫ ∫

SB−P

(φ− φi)n · ∇1

r
dS ± 1

2
(φ− φi)p+

− 1

4π

∫ ∫

SW

(φU − φL)n · ∇1

r
dS (2.44)

where the factor 1/2 is due to the use of the hemisphere instead of the sphere,

and the sign is due to the direction of n.

The solution of the above relationship let us evaluate the potential in

any point P that lies on the boundary SB, in terms of φ and ∂φ/∂n on the

boundaries.

2.2.1 Boundary conditions

The solution of equation (2.44) must satisfy a number of known boundary

conditions which can be imposed on the solid surfaces and the fluctuating

wake. Particularly, the Neumann condition must be satisfied on the surface

SB so:

n · ∇φ = −UnT − UnR (2.45)

where UnR is the resultant normal component of velocity relative to the sur-

face due to the motion of the body, and UnT is the normal component of the

velocity due to possible flows of transpiration through the surface, therefore

this term is zero for the case of a solid boundary with no transpiration.

Instead, no condition in terms of potential results a necessity on the sur-

face SW , because it itself represents the imposition of the wing trailing edge
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Kutta condition. The rise in potential lies in the fact that it must assure that

the velocity does not rotate round the trailing edge. This way the presence

of the wake does not introduce additional unknowns to the problem, because

the rise in potential on the wake is associated to the unknown potentials near

the trailing edge and the contribution of the SW integral must be considered

as a known term.

However, a constraint exists for the wake, due to the wake form. This

form must be determined considering that the wake cannot support a load,

because the wake is not a solid surface. Therefore, the wake form must be

aligned with the local flow direction, which means to establish a condition of

tangency of the velocity in every point:

U · n|SW = 0 (2.46)

Note that it is necessary to know the flow field U but the goal of the analysis

is U . This non-linearity can be overpassed to approach the wake with a fixed

form, independent of the flow field, or with the support of solution iterative

techniques.

2.2.2 Singularity model

A given flow field can be obtained from an infinite number of configura-

tions of distributions of singularities (sources and doublets) on the problem

boundaries (SB, SW ), each combination producing a different flow in the

inside region.

A unique combination of singularities can be obtained with different sin-

gularity models. Particularly, one way that can be considered is to specify

one of the singularity distributions and to solve for other using boundary

conditions only on the side of the boundary. Another way is to apply certain
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constraining relationships on the singularity distributions.

One important characteristic for certain of the singularity models from

the numerical point of view, is that the flow field generated in the inner

region by the model is related to the boundary [41]. Particularly, the jump

from the internal flow to the external flow should be a small passing through

the boundary. Therefore, a minimum perturbation from the singularities is

required. To satisfy this requisite one can treat the internal flow directly

in equation (2.44), obtaining a unique singularity distribution by specifying

boundary conditions on both sides of the surface. In this case, the inner

velocity potential φi is specified directly in equation (2.44): this is an internal

Dirichlet boundary condition. Particularly, consider the internal flow equal

to outset flow φi = φ∞. This way, equation (2.44) becomes:

0 =
1

4π

∫ ∫

SB

1

r
n · ∇(φ− φ∞)dS+

− 1

4π

∫ ∫

SB−P

(φ− φ∞)n · ∇1

r
dS +

1

2
(φ− φ∞)p+

− 1

4π

∫ ∫

SW

(φU − φL)n · ∇1

r
dS (2.47)

where the perturbation potential on the exterior surface φ− φ∞, is now the

doublet density

4πµ = φ− φ∞ (2.48)

whereas the source distribution is

4πσ = −n · (∇φ−∇φ∞) = −Un + Un∞
(2.49)

Note that the source distribution is therefore established at the outset.
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At this point, equation (2.47) becomes
∫ ∫

SB

σ

r
dS −

∫ ∫

SB−P

µn · ∇1

r
dS + 2πµp −

∫ ∫

SW

µwn · ∇1

r
dS = 0 (2.50)

where µw = (φU − φL)/4π is the known wake doublet density at the trailing

edge.

Moreover, note that sources and doublets have a physical sense. The

thickness effects can be simulated by means of the doublets, the non sym-

metrical conditions by means of the sources.

Equation (2.49) shows that the Neumann condition can be satisfied only

by the sources and the sources are known too.

So far thick configurations having a distinct internal volume enclosed

by the surface S have been concerned. When the configurations having a

indistinct internal volume (parts of the configuration are extremely thin),

then these configurations can be represented by open surfaces. In this case,

equation (2.43) becomes

φ(P ) = φ∞(P ) +
1

4π

∫ ∫

SB

(
1

r
∇(φU−φL)−(φU−φL)∇

1

r

)
·ndS+

− 1

4π

∫ ∫

SW

µwn · ∇1

r
dS (2.51)

If the normal velocity is continuous through the sheet then the term n ·
(∇φU −∇φL) = 0, disappearing the source term and the above relationship

becomes:

φ(P ) = φ∞(P )−
∫ ∫

SB

µn · ∇1

r
dS −

∫ ∫

SW

µwn · ∇1

r
dS (2.52)

where µ = (φU − φL)/4π is the jump in total potential across the sheet.

Applying the external Neumann boundary condition, then

n · ∇φ(P ) = n · ∇φ∞(P )−
∫ ∫

SB

µn · ∇
(
n · ∇1

r

)
dS+
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−
∫ ∫

SW

µwn · ∇
(
n · ∇1

r

)
dS (2.53)

where n · ∇φ(P ) = 0 in case of no transpiration.

Equations (2.50) and (2.53) are the basic equations for the solution of the

flow problem. These equation can be written so:

φ(P ) = φ∞(P ) + φ′(P ) (2.54)

n · ∇φ(P ) = n · ∇φ∞(P ) + n · ∇φ′(P ) (2.55)

where φ′ represents the potential of perturbation.

By means of the resolution of these equations the unknown singularity

distributions may be obtained on the body surface and that content to com-

pute the flow field by means of the derivation of the potential.

2.2.3 Computation of velocities and forces

Once the singularity distribution strengths are known, the total velocity

in every point of the domain is possible to compute by means of the following

equation

U(P ) = U∞(P )−
∫ ∫

SB

µ∇
(
n · ∇1

r

)
dS+

+

∫ ∫

SB

σ∇1

r
dS −

∫ ∫

SW

µw∇
(
n · ∇1

r

)
dS (2.56)

The above relationship is the basic for many numerical solutions and has

been obtained by taking the gradient of total scalar potential of equation

(2.43).
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n

t2

t1
Vt1

Vt2

Vn

Figure 2.7: panel local reference frame for evaluating the normal and tangential
velocity components.

Instead, when the point P lies on the boundary, it is necessary to consider

equation (2.44) and to use following equation

U(P ∈ body) = U∞(P )− 2

∫ ∫

SB−P

µ∇
(
n · ∇1

r

)
dS+

+2

∫ ∫

SB

σ∇1

r
dS − 2

∫ ∫

SW

µw∇
(
n · ∇1

r

)
dS (2.57)

However, as the particular choice of the source values, it is possible to com-

pute the velocity by taking the gradient of the potential in a local reference

frame centered in the point of interest, as showed in figure 2.7.

In fact, as the normal component of velocity disturbance has been es-

tablished, it is possible to compute the tangential components of the same

velocity disturbance by means of the derivatives of the doublet intensity along

two direction tangential to the body:

u(P ) = ut1it1 + ut2it2 + unin =
∂µ

∂t1
it1 +

∂µ

∂t2
it2 − σin (2.58)
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In the case of a Neumann boundary condition, above equation becomes:

u(P ) = ±∂µ/2
∂t1

it1 ± ∂µ/2

∂t2
it2 − U∞ · in (2.59)

where the signs +/− represent the upper and lower sides, respectively. These

components will be summed at the un-disturbed local velocity in order to

obtain the total velocity:

U(P ∈ body) = U∞(P ) + u(P ) (2.60)

After the distributions of velocity and ∂φ/∂t have been computed on the

bodies, by means of Bernoulli theorem, one may obtain the corresponding

distributions of pressure to integrate in order to compute forces and mo-

ments.

2.3 Panel method numerical procedure

In the above section, the solution to the potential flow problem has

been obtained analytically, only after some geometrical simplifications in the

boundary conditions have been made.

In most of the cases, the numerical application is characterized by the

treatment of more realistic geometries and the fulfillment of the boundary

conditions on the corresponding surface. In this section, the numerical pro-

cedure will be examined.

The numerical method to solve the potential flow problem is based on

the surface distribution of singularity elements, then the problem solution

has been reduced to finding the strength of these elements.

From the numerical point of view, a solution can be obtained if the body

and wake geometries are discretized separately from singularity distribution

[30]. In most of applications, the body and wake surfaces are represented
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by a large number of small quadrilateral and/or triangular regions which are

planar in most methods. These small quadrilateral regions are called panels

defined by functions of the kind z = f(x, y) in a local reference frame (see

figure 2.8); therefore this type of method is called panel method. Thus, as

the body is divided into N surface panels, so the wake is represented by Nw

wake panels. Every single panel is characterized by means of its grid points.

By means of the discretization process, panels are defined by polynomi-

als on which the order of desired accuracy to represent the real geometry

depends. This accuracy rises with the polynomial order.

control point
grid point

control point
grid point

Figure 2.8: examples of discretized (thick and thin) body and wake geometries.

The singularity distribution must be subdivided into panels which are co-

inciding with the body panels where the singularity strength may be assumed

constant (low-order), linearly variable (first order) or parabolic (second or-

der). Generally, the order of accuracy used for the singularity distribution
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is equal to the order of the body discretization, since the schematization

accuracy of lower order should be, however, decisive.

For the singularities, the simplest discretization is the constant strength

over quadrilateral panel, defined by plane surfaces and rectilinear borders.

This discretization allows to have a notable simplicity of calculus and of

numerical implementation but requires a great number of panels in order to

compensate the accuracy loss due to low polynomial order. However, this

choice results to be the most used technique of panels methods.

Once the body and wake surfaces have been discretized, the control point

in which the boundary condition must be imposed results automatically in-

dividuated into the centroid of each panel. For thick bodies, the condition

of zero normal flow or assigned normal flow across the body surfaces may be

defined by using Dirichlet formulation (2.50). For thin bodies, this condition

may be defined by using Neumann formulation (2.53), as seen in previous

section. Thus, equations (2.50) and (2.53) may be rewritten in each control

point of NB panels (of which Nd
B of Dirichlet type and Nn

B of Neumann type)

present on the surfaces. Particularly, let J , rJ and Nw be the panel in which

the boundary condition is imposed on the control point (see figure 2.9), the

distance respect to the panel of which the effect is computed and the wake

panel number, respectively, results

NB∑

K=1

∫ ∫

panel K

µK n · ∇ 1

rJ
dS +

NW∑

L=1

∫ ∫

panel L

µwL n · ∇ 1

rJ
dS =

=

NB∑

K=1

∫ ∫

panel K

σK
1

rJ
dS (J=1, ...,Nd

B) (2.61)
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NB∑

K=1

nJ ·
∫ ∫

panel K

µK∇
(
n·∇ 1

rJ

)
dS+

NW∑

L=1

nJ ·
∫ ∫

panel L

µwL∇
(
n·∇ 1

rJ

)
dS=

=

NB∑

K=1

nJ ·
∫ ∫

panel K

σK∇
1

rJ
dS−nJ ·(U−U

∞

) (J=1, ...,Nn
B) (2.62)

Figure 2.9: schematization for the influence coefficients.

The integrals in the above equations are over the single panel surface, and

each one represents the influence that the generic panel K or L produces on

the control point of the panel J . Moreover, these integrals may be substituted

by summations extended to the corresponding grid points. For the elements

with constant or unitary singularity strength, this influence is due only to

the panel geometry and it may be synthesized using some coefficients, called

57



PANEL METHODS

influence coefficients:

Bd
JK =

∫ ∫

panel K

1

rJ
dS (2.63)

Bn
JK = nJ · Uσ

JK ; Uσ
JK

∫ ∫

panel K

∇ 1

rJ
dS (2.64)

Cd
JK =

∫ ∫

panel K

∇ 1

rJ
dS ; Cd

JJ = −2π (2.65)

Cn
JK = nJ · Uµ

JK ; Uµ
JK

∫ ∫

panel K

∇
(
n · 1

rJ

)
dS (2.66)

where the apexes d and n are always indicative of the imposed condition

type.

By using the influence coefficients, equations (2.61) and (2.62) become

NB∑

K=1

Cd
JKµK +

NW∑

K=1

Cd
JKµ

w
L =

NB∑

K=1

Bd
JKσK

(J = 1, ..., Nd
B) (2.67)

NB∑

K=1

Cn
JKµK+

NW∑

K=1

Cn
JKµ

w
L =

NB∑

K=1

Bn
JKσK −nJ ·(U−U

∞

)J

(J = 1, ..., Nn
B) (2.68)

When the source strengths related to the condition of zero normal flow across

the body surfaces (equation (2.49)) are assigned for thick bodies or fixed

equal to zero for thin body, it is possible compute the influence coefficients

Bd
JK e Bn

JK , letting unknown only the doublet terms. Moreover, the Kutta

condition permits to rewrite also the wake doublets µwL in function of the

body doublets µK . In fact, for thick body, every single wake panel will have

one side coinciding with the trailing edge of the body on which two panels

(one upper panel, one lower panel) of the same body converge.
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Let µuL, µ
l
L, µ

w
L be the doublet strength of the upper panel, the doublet

strength of the lower panel, and the doublet strength of the near wake panel

(see figure 2.10), by the Kutta condition results

µwL = µuL − µlL (2.69)

Figure 2.10: reference frame for the Kutta condition.

As for the bodies without thickness (figure 2.10), there is not difference

between upper and lower, therefore

µwL = µlL (2.70)

Thus, the influence of any panel wake becomes:

Cd
JKµ

w
L = Cd

JK(µ
u
L − µlL) (2.71)

Cn
JKµ

w
L = Cn

JKµ
l
L (2.72)
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Equations (2.71) and (2.72) consent to trace the doublet influence of the

doublets on the wake panels back to the corresponding doublets near the

trailing edge, correcting simply the influence coefficients Cd
JK and Cn

JK , thus

AdJK = Cd
JK panel K not at the trailing edge (2.73)

AdJK = Cd
JK − Cd

JL panel K at the upper trailing edge (2.74)

AdJK = Cd
JK + Cd

JL panel K at the lower trailing edge (2.75)

AnJK = Cn
JK panel K not at the trailing edge (2.76)

AnJK = Cn
JK + Cn

JL panel K at the trailing edge (2.77)

Finally, one obtains:

NB∑

K=1

AdJKµk=

NB∑

K=1

Bd
JKσK (J = 1, ..., Nd

B) (2.78)

NB∑

K=1

AnJKµk=

NB∑

K=1

Bn
JKσK−nJ ·(U−U∞)J (J = 1, ..., Nn

B) (2.79)

Another condition of the wake form must be added to equations (2.78) and

(2.79). This is a no-linear problem since this condition corresponds to the

imposition of a variation of the wake form which fluctuates freely in the

domain [15]. In the case of flexible wake, this condition may be imposed

by annulling the normal velocity components in the control points of every

single wake panel:

U · nL = 0 (L = 1, ..., NW ) (2.80)

Equations (2.78) and (2.79) for the NB control point drive to a set of NB

linear algebraic equations in the NB strength unknown of surface doublets

µK .

The numerical solution of this set is generally stable, because the un-

known doublet distribution is quite little, since it is due to only perturbation

potential.
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2.3.1 Unsteady panel methods

The method of solution of incompressible, irrotational flow that is devel-

oped so far does not include the unsteady nature of the problem. Therefore,

it will be shown that this method may include time-dependency that will

be introduced through the boundary conditions and the use of the unsteady

Bernoulli equation.

Figure 2.11: inertial frame and body frame used to describe the motion of the
body.

The choice of the coordinate systems is very important for the formula-

tion of the unsteady problem. In order to prescribe correctly the boundary

conditions on the solid body surfaces, consider a body-fixed coordinate sys-

tem (0, x, y, z) and a fixed-in-space global reference frame (0, X, Y, Z) which

is assumed to be known, as illustrated in figure 2.11. Suppose the body

motion law is known, the zero normal flow boundary condition becomes:

∂φ

∂n
= (U∞ − U r − Ω× r) · n (2.81)
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where r = r(x, y, z), U∞, U r and Ω are the position of any point in the body

reference frame, the velocity of the body frame origin in global coordinates,

the relative motion of the surface due to deformation of the body, the angular

velocity, respectively.

2.3.2 Unsteady panel wake model

Regarding the wake, the solution is based on a time-stepping technique:

the wake is formed in the inertial coordinate system as the body from which

the wake separates moves away from its initial position, shedding from known

separation lines on the surface body (trailing edges of wings, for example).

During every single time step, the wing moves along its flight path and every

trailing edge vortex panel sheds a wake panel with a strength (related to the

Kutta condition) corresponding to its circulation in the previous time step.

It is as if the trailing edge leaves its ”tracks” during its pass or, if the body

is motionless and surrounded by the stream, the trailing edge is trailed by

the flow [14] (see figure 2.12). So a new row of wake panels is added to the

wake at the separation line and all the preexisting rows of wake panels are

convected downstream with the local velocity field in the inertial reference

frame at each time step [9][10][8][13].

In detail, at the beginning of the motion no wake panels exist but only

the wing bound vortex panels exist where the closing segment of the trailing

edge vortex elements represents the starting vortex or separation line.

During the second time step, the wing is moved along its flight path and

each trailing edge vortex panel sheds a wake panel. This first wake sheet,

used to account for the vorticity recently shed into the domain from the wing

trailing edge, imposes a well defined potential jump at the trailing edge to

satisfy the Kutta condition: this condition is used as a boundary condition
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to determine the strength of the doublets to be shed into the first row of

a wake. Therefore, every single wake panel has a vortex strength equal to

the circulation obtained by fulfilling the Kutta condition at the trailing edge.

Once the trailing edge vortexes are given, the buffer wake sheet is determined

automatically.

rigid wake

flexible wake

Figure 2.12: examples of generation of rigid (above) and flexible (below) unsteady
wake.

During the third time step, two rows of wake panel exist: new first row of

wake panels closest to the trailing edge where the Kutta condition must be

imposed is shed by previous time-step trailing edge vortex panel, second row
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is known since corresponds to the convected previous time-step wake panel

row where the Kutta condition was resolved. Therefore, at the rising of time

the rows successive to the wake panel row, closest to the trailing edge are

known.

This time stepping methodology may be continued at every single time

step in which vortex wake is moved by the local velocity. Thus, unsteady

phenomenon like wake rollup may be simulated.

At this point, it is clear that in order to model the wake the following steps

are taken: define the wake separation line which coincides with the trailing

edge and is treated as the first section of the wake; identify which patch a

wake separates from, the side of the patch which is parallel to the separation

line and the row of panels within the patch that the wake separates from.

As described by Katz and Plotkin [61], this row of wake panels have a length

dimension in the streamwise direction corresponding to

cw |U∞| · t

where the value of cw is typically chosen to be 0.2 ÷ 0.3. In the present

implementation, a value of 0.25 was found to be adequate. This reduced

value of cw is a result of the use of vortex rings to model the wake vorticity

rather than higher order vorticity distributions.

In this sense, from a numerical point of view, observe the importance

of the distance and relative angle to the trailing edge. In fact, the wake

vortex location should be aligned with the wing trailing edge and be placed

closer to the latest position of the trailing edge. Therefore, the doublet when

placed in the time interval introduces an approximation that underestimates

the induced velocity when compared to the continuous wake vortex sheet

result. This is so, since the distance of the continuous wake from the trailing

edge during the time interval is a zero distance whereas the distance of an
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equivalent panel placed in the time interval is not zero. Therefore, to correct

this wake discretization error it is necessary to place the wake panel with a

value of length dimension in the streamwise direction chosen to be 0.2÷ 0.3.

Instead, for the successive rows of wake panels, the value of cw is chosen to

be 1: the length in the streamwise direction of |U∞| · t.
Let Nts be the time step in which one wishes to compute the solution

and MW the number of wake panels generated at each time step. Equations

(2.78) and (2.79) are corrected in this way:

NB∑

K=1

AdJKµK=

NB∑

K=1

Bd
JKσK−

Nts−1∑

I=1

MW∑

L=1

Cd
JILµ

w
IL

(J = 1, ..., Nd
B) (2.82)

NB∑

K=1

AnJKµK=

NB∑

K=1

Bn
JKσK−

Nts−1∑

I=1

MW∑

L=1

Cn
JILµ

w
IL−nJ ·(U−U∞)J

(J = 1, ..., Nn
B) (2.83)

Figure 2.13: references for the indices of the wake panels.
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Clearly, equations (2.82) and (2.83) are valid for any choice of Nts, sup-

posing the solution is computed in all below Nts− 1 time steps; particularly,

equations (2.82) and (2.83) are equal to equations (2.78) and (2.79) when

Nts = 1, respectively (figure 2.13).

The wake can be rigid, flexible or a combination of the two. If the wake is

flexible, it is deformed at each time step by the local velocity induced by the

presence of all the bodies and wakes being modeled therefore it is necessary

to compute the velocity field into the grid points and/or control points of the

wake panels and to deform these panels so that equation equations (2.80) are

fulfilled correctly. In the case of rigid wake, the problem is linearized by the

fact that the wake is imposed and thus the flow field can not influence the

wake.

So far the wake modeling is only characterized by using of common wake

panels. In the next chapter, it is going to be shown how the wake may be

modeled by means of three dimensional singularity point vortex which will

be really generated by the panels wake.

2.3.3 Computation of velocities and forces

For the computation of the total velocity in any point P outside the body,

rewrite equation (2.56) in discrete term:

U(P )=U∞(P )−
NB∑

K=1

Uµ
KµK−

NB∑

K=1

Uµ
Kµ

w
L+

NB∑

K=1

Uσ
KσK (2.84)

where the coefficients

Uσ
K =

∫ ∫

panel K

∇1

r
dS ; Uµ

K =

∫ ∫

panel K

∇
(
n · ∇1

r

)
dS (2.85)

have the same physical significance of the corresponding coefficients of equa-

tion (2.65) and (2.66).
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In the same way, one can start by equation (2.57) for velocity calculation

in every single point lying on the body surfaces, particularly in the grid

points and control points. However, for the points lying on the surfaces, it

is most advantageous to use equation (2.58) which, for the computation of

the tangential components of velocity perturbation, may be applied to an

explicative scheme, as follow:

ut1 =
µ(J3)− µ(J1)

d1 + d3
; ut2 =

µ(J4)− µ(J2)

d2 + d4
(2.86)

In the case of a Neumann boundary condition (see equation 2.59), the tan-

J1
J2

J3

J4

J0

d
1

d3

d
2

d4

Figure 2.14: schematization of the computation of the velocity perturbation com-
ponents.

gential component of velocity perturbation becomes:

ut1 = ±(µ(J3)− µ(J1))/2

d1 + d3
; ut2 = ±(µ(J4)− µ(J2))/2

d2 + d4
(2.87)

In reality, the panel distribution results difficultly so regular as illustrated

in figure 2.14, therefore, in order to apply equation (2.58) it is necessary to

use a more complex computational technique how, for example, building a

function of doublet strength distribution on the basis of a large number of
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control point into the round of the interest point:

µ̂ = f(ξi, ηi, ζi, µi) (i = 1, ..., n) (2.88)

with the purpose to compute the derivatives.

After the velocity computation over the surfaces, it is possible to compute

the corresponding distribution of pressure or, alternatively, of the pressure

coefficient:

p = p∞ +
1

2
ρ∞(U2

∞ − U2)− ρ∞
µ(t)− µ(t−∆t)

∆t
(2.89)

Cp = 1− U2

U2
∞

+
µ(t)− µ(t−∆t)

∆t

2

U2
∞

(2.90)

thus, the force acting on every body:

NB∑

J=1

pJnSJ = F (2.91)

2.4 The vorton method for wake

The wake problem was analyzed by several authors. In particular way,

Helmholtz analyzed the problem of two-dimensional body submerged in a

flow field with the presence of a wake (called Helmholtz wake) behind the

body whereas Von-Kármán studied the formation of vortices (called Kármán

vortices) from a cylinder [50]. The goal of this section is to present and

analyze a new vortex method as a tool for the direct numerical simulation

of unsteady, inviscid and incompressible flows and, particularly, of vorticity

localized on the thin wake regions. This new method is the vorton method,

also called vortex particle method. The wake is a vorticity region which may

be discretized in several ways. In panel methods, as already shown, the wake
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is discretized into panels. In the present method, the wake is discretized into

vortons.

2.4.1 The vorton method

To present this technique, consider a vorticity region and let V be the

volume of this region. Since vortex methods are based on the discretization

of the vorticity domain, consider a generic uniform grid taken as a set of

cubes of volume h3. A vorton, also called vortex particle, is simply a three-

dimensional point vortex αp equal to the vorticity multiplied by h3, according

to Cottet and Koumoutsakos [23]. This vortex element may be expressed as

αp(x, y, z, t) = αxp(t)i + αyp(t)j + αzp(t)k (2.92)

where αxp(t), αyp(t) and αxp(t) represent the scalar component of αp, at a

given time, along the x, y and z directions, respectively. In figure 2.15, the

equivalence between a vorton and a simple vorticity region of vorticity (vortex

tube with constant section area) is represented. Clearly, a vortex tube may

be also discretized into so many vortons: as described by Winckelmans and

Leonard [62], a vorton may be thought of a small section of a vortex tube.

The vector potential for this element is a solution of Poisson’s equation

∇2Ψ = −ω. The solution of Poisson’s equation is given by equation (A.9)

which is an integral over the volume of vorticity. According to Strickland et

al. [56][55], the vector potential is so given by

Ψp(r, t) =
αp(r, t)

4π|r| (2.93)

where r is the distance from the vorton to the point of evaluation. Observe

that above equation is singular for r = 0. This singularity may lead to

very large values when |r| approaches zero, therefore a core-function ξψ is
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<=> a
P

dl

x

dS

G

Figure 2.15: vortex tube and its corresponding vorton.

necessary to regularize the vector potential. Let η and rη be the core-radius

associated with the vorton and the ratio between the absolute distance of

the evaluation point and the core-radius (rη = |r|/η). The core-function ξψ

is so that, when rη < 1, the vector potential decays linearly to zero.

The velocity field induced by a single vorton is given by the curl of the

vector potential:

UΨp(r, t) = ∇×Ψp(r, t) (2.94)

Therefore, a vorton is a singularity element with the velocity magnitude that

decays as 1/r2, see figure 2.16. Since Ψp is a solution of Poisson’s equation,

the velocity field due to the single vorton is rotational and solenoidal every-

where. As for the vector potential, the velocity results singular for r = 0.

Introducing a core function ξU as similarly done with the vector potential,

this core function forces the velocity to decay linearly to zero when rη < 1,
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as illustrated in figure 2.16.

Figure 2.16: flow field induced by a vorton.

Note that a vorton results different from a two-dimensional vortex point.

In fact, a 2D vortex is a solution of the Laplace’s equation ∇2φ = 0, where

U = ∇φ is irrotational by definition. Therefore, it is a singularity element

with only a tangential velocity component whose magnitude decays as 1/r,

being ∇φ = −Γ/(2πr) as illustrated in figure 2.17.

Moreover, the vorton evolution is governed by the vorticity evolution

equation (1.28), therefore every single vorton is convected by the local veloc-

ity and strained by the local velocity gradient (stretching term in the vorticity

evolution equation).

In order to approximate the exact initial vorticity field as accurately as
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Figure 2.17: flow field induced by a two-dimensional vortex.

possible, now it is described the way to initialize the vortons. For the purpose,

begin by considering the vorticity region of interest, which is the thin wake

trailing the body surfaces. As shown in the previous chapter, this may be

equivalently represented using equivalent doublet sheets and vortex rings.

Thus, the problem is how to convert the wake commonly represented using

vortex rings or equivalent doublet panels into the vortons, or also it is to be

understood how to assign the strength to the vortons in order to represent

the vorticity region correctly by means of vortons. According to Willis [60],

the following steps are taken:

1. determine the equivalent vortex representation for every single doublet
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panel to be converted to vortons;

2. fix the number of vortons to be generated from every single panel;

3. divide the panel into equal area segments.

Therefore, the vorton is computed by integrating the strength of the vortex

line surrounding the panel area segment

αp(r, t) =

∫
Γ(t)ds (2.95)

In the vorton method, the vorticity is replaced by a set of vortons and there-

fore the vorticity field is approximated as the linear combination of the vor-

ticities represented by the vortons, as follows

ω(r, t) =
∑

P

αp(r, t) (2.96)

as shown by Winckelmans and Leonard [62], Willis et al. [60][61], Lebental

[35], Alkemade et al [3], Voutsinas et al. [59], Chatelain et al. [20], Aksman

and Novikov and Orszag [2], Park and Kim [49], Eldredge [28], Chatelain and

Leonard [21], Voutsinas et al. [48], Spalart [53], Cottet and Koumoutsakos

[23].

The velocity field UΨ(r, t) is taken as the curl of the streamfunction which

solves the Poisson’s equation

∇2Ψ(r, t) = − ω(r, t) (2.97)

Recalling that the Green’s function G(r, r′) for ∇2G = δ(r, r′) in unbounded

domain is G(r, r′) = −1/(4π|r− r′|) (as shown in section A.1) and according

to equation (2.93), the vector potential is the summation over the vector

potential of all the vortons in the domain:

Ψ(r, t) =
1

4π

∑

p

αp(r, t)

|r − rp(t)|
(2.98)
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The velocity vector is obtained as the curl of the streamfunction Ψ, as follow

UΨ(r, t) = ∇×Ψ(r, t) =
1

4π

∑

p

[
r − rp(t)

]
× αp(r, t)

|r − rp(t)|3
(2.99)

where the velocity components are:

u
ψ

=
1

4π

∑

p

1

|r − rp|3
[
(z − zp)αyp − (y − yp)αzp

]
(2.100)

v
ψ

=
1

4π

∑

p

1

|r − rp|3
[
(x− xp)αzp − (z − zp)αxp

]
(2.101)

w
ψ

=
1

4π

∑

p

1

|r − rp|3
[
(y − yp)αxp − (x− xp)αyp

]
(2.102)

Therefore, the rotational velocity field may be constructed by means of a

linear combination of a set of basis velocity fields, every one of which is

induced by a vorton. Clearly, the implementation results very simple and

easy.

Similarly, the gradient of the velocity used for the vorticity stretching in

the vorticity evolution equation results:

∇ UΨ(r, t) =
1

4π

∑

p

∇
[
(r − rp)× αp(r, t)

|r − rp|3
]

(2.103)

Regarding the vorton evolution, this is characterized by a change of strength

and position in time. Each vorton displacement derives from the velocity

field caused by the other vortex particle [3].

Now, in the Lagrangian representation, the position evolution of a single

vorton is governed by the velocity vector, as follow

D

Dt
rp(t) = Up(rp(t), t) (2.104)

As for the evolution of the particle strength, the biggest difference between

two-dimensional and three-dimensional vortex method is the existence of

the stretching term. In two-dimensional case, since the vorticity direction
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is perpendicular to the velocity direction, this term always goes to zero. In

three-dimensional case, the evolution of vorticity is governed by the stretching

term which changes the orientation of the vorticity as well as its value for

every timestep. Vorton deformation is derived from the Helmholtz equation,

therefore in Lagrangian approach follow

D

Dt
αp(r, t) = αp · ∇ Up(rp(t), t) (2.105)

At this point, the equations of the evolution of the vortons are discretized

using a forward Euler scheme. First, the position of the vorton is updated,

r(t+ 1) = r(t) + Up(r(t), t) ∆t (2.106)

Second, the strength of the particle is updated,

αp(t+ 1) = αp(t) + αp(t) · ∇Up(r(t), t) ∆t (2.107)

Clearly, the use of higher order time stepping method will be beneficial in

increasing solution accuracy.

A system of vortons can, in turn, be used to model body surfaces, con-

tainer boundaries, free-surfaces, internal flows, jet flows, turbulent internal

flow, and wakes in unsteady three-dimensional flow fields.

In the present work, vortons will be used to model wakes in unsteady, in-

viscid and incompressible flows because these vortex elements are more easily

manipulated than the traditional wake sheet representation. In fact, panel

methods presents the need to compute the induction of the flow field due to

four segments of each doublet panel whereas the vorton discretization offers

the possibility to compute the induction due only to a point for every single

vorton. Hence, the vorton method results to be more attractive because it

has also the advantage that the three-dimensional point vortexes are some-

how independent as they do not necessarily belong to a specific wake panel

for all times.
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To summarize, the vorton method has been shown in order to solve Pois-

son’s equation in the wake. Moreover, the two evolution equations of the

position and strength of the vortex particles have been presented also. Now,

it is necessary to compute the initial strength and position of the vortons

when they are created in the wake. Before this, it is necessary to describe

the wake model in detail.

2.4.2 Conversion of the wake panels to vortons

As seen in above chapter, the wake in a common panel method may be

modeled by means of a distribution of doublets with a strength so that the

Kutta condition at the trailing edge results fulfilled. Now, the goal is to

describe the conversion of the wake panels to vortons for an unsteady wake

model which consists of a distribution of panels and a distribution of vortons.

In the wake model with vortons, the wake is divided into two parts: a

near wake and a far wake. As regards the near wake, close to the wing, the

wake is modeled using a wake sheet slicing the domain. This buffer wake

sheet imposes the prescribed potential jump in the normal direction across

the wake sheet and this is used to account for the vorticity recently shed

into the domain from the wing trailing edge. Regarding the far wake, this

is represented using a distribution of vortons. This wake decomposition is

presented in figure 2.18.

The buffer sheet is at least composed of two rows of panels trailing from

the wing trailing edge. Closest to the trailing edge, the panels of the first

row are unknown wake panels because initially have an unknown strength:

their strength is determined by the Kutta condition. Instead, the panels of

second row are known wake panels since correspond to the convected previous

time-step unknown wake panels where the Kutta condition was resolved at
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FAR WAKE (VORTONS)

CONVERSION ZONENEAR WAKE (PANELS)WING TRAILING EDGE

Figure 2.18: wake model with vortons.

t = t−∆t.

As described for the unsteady panel wake, also in this case the first row of

wake panels has a length dimension in the streamwise direction corresponding

to cw|UG| · t where the value of cw is chosen to be 0.25. The panels of the

second row have a known strength corresponding to the previous timestep

trailing edge potential jump with a value of cw is chosen to be 1.

At each time step, the previous time-step second row of wake panels is

converted into vortons.

Similarly to the panel wake model, the wakes will be constructed gradu-

ally at every time step generating a new row of buffer panels closest to the

trailing edge and, furthermore, vortex particles will be created as the near
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parts of the wakes evolve.

An important point that must be considered for the conversion of the

dipole wake sheet to vortons, is the equivalence between the change in dou-

blet strength along the surface and vorticity oriented in the surface tangential

direction normal to the doublet gradient (see section 2.1). In the particular

case of constant doublet panels, the vortex analogue is a vortex ring around

the perimeter of the given panel: hence, the strength of the vortex line seg-

ment between two adjacent constant strength panels is merely the difference

in doublet strengths. Therefore, the vorton is computed by integrating the

strength of the vortex line segments between adjacent panels depending on

chosen model.

To summarize, the conversion is done in the following way [35]:

• the corners of each near panel of the second row are convected with the

local velocity;

• the location and strength of vortons are calculated according to the

model used;

• the strength of the vortex line between the near and the far wake is

updated.

The adopted model is called DIAS model. It is characterized by the conver-

sion of the wake panels to vortons localized on the vertexes of the transformed

panels.
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Γe
k+2αk+2

αk+1αk+1 Γe
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k+1

Γw
k+2

Γw
k

Γw
k+1

Figure 2.19: DIAS vorton wake model - the mechanism of vortex particles gener-
ation.
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With the notation of figure 2.19 the vortons have the following strengths

αk+1 = tk3w(Γ
k
w − Γk+1

w ) + tk3e(Γ
k
e − Γk+1

e ) (2.108)

αk+2 = tk+1
2E (Γk+1

E − Γk+1
W ) +0.5 tk+1

3W (Γk+1
W − Γk+2

W ) +

+0.5 tk+2
3E (Γk+1

E − Γk+2
E ) (2.109)
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Chapter 3

INVISCID FLOWS OF

PARTICLES

In the previous chapter it has been shown that in certain conditions the

wake can be modeled with vortons instead of panels. Even if the behavior

of vortons is less troublesome than that of the wake panels when dealing

with wake-body interactions, as shown in Nola’s work [64], there is still the

chance that vortons can enter into the bodies. This is a numerical error,

then it is required to indicate what are the sources of this error, what are the

possible countermeasures and what are their advantages and disadvantages.

In simple words high order integration schemes with fine paneling and fine

time-stepping give the best accuracy results but they cost greater computa-

tional time than low order, coarse codes; however during the initial design

phases fast codes are more rewarding. Due to this, quadrangular panel meth-

ods adopting a step-by-step time integration scheme are amongst the most

widespread panel methods. Moreover, since changing the time integration

scheme into an existing panel method means a major re-organization of the

code and since the time step is often decided by other requirements than
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the trajectory integration accuracy, then this chapter is orientated towards

the ascertainment of this error and the possible countermeasures, excluded a

time step modification and a major re-organization of the code. In order to

understand what could happen to vortons in a 3D flow it has been created

from scratch a simple 2D unsteady Douglas-Neumann panel method with

two different time integration schemes which allowed a qualitative evalua-

tion of the problem. In particular in this chapter are shown what are the

advantages and disadvantages of an explicit Euler, or step-by-step (from now

on FWE), time integration scheme with an elemental flow of passive scalar

particles, compared to a predictor-corrector time integration scheme (also

known as Heun method or as 2nd order Runge-Kutta, from now on RK2).

Since choosing to move the particles or the body first it is part of the time

integration scheme itself and since this choice just implies a different starting

error it has been chosen to move the particles first into the 2D code, which

has been a natural way to develop it at the beginning.

An irrotational and inviscid flow induced by a non lifting 2D circle mov-

ing at constant speed has a well known analytical solution for the velocity

potential φ and the stream function Ψ. Thus this body is often the subject

of test cases, as done here. Precisely ψ is just scalar in a 2D case. Unfortu-

nately it has not been found any bibliographical reference about an analytical

function r(t) of a particle moving into this flow to compare directly to a nu-

merical trajectory computed with a FWE time integration scheme. Therefore

it has been developed the Appendix B to know what is the final position of

a particle in this flow, when the circle has arrived far downstream. This ap-

pendix has been useful in understanding if the results obtained from the 2D

Douglas-Neumann panel method with the RK2 scheme are a good reference

to compare with analogous results obtained with the FWE scheme.
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3.1 The sources of numerical error into panel

methods

There are errors due to numerical approximations done into panel meth-

ods, which must be kept into reasonable bounds, most often it is sought for

convergence when a discretized independent variable approaches zero. The

first source of error is the spatial discretization of the model. Panel methods

are a design tool useful to create objects of aeronautical (and many others)

interest, therefore the panel shape must be coherent with a given represen-

tation of the object itself. As an example it is not correct to use parabolic

panels to discretize the body and then the wake is discretized with a simple

quadrangular discretization: in any case rules the error due to the coarsest

spatial discretization, it is in any case ∝ ∆S, where ∆S is the panel area. If

the parabolic discretization is applied everywhere then the error is ∝ ∆S2.

There is another source of error to account. As already explained into §2.3

and in [15] there is a non linearity into the computation of the wake, which

can be reduced or not if it is introduced an iteration during the computation

of its singularity strength. But there is also another problem. When it is

expected that the wake interacts with other bodies downstream, as already

shown in Nola’s work [64], a panel formulation of the wake is more trouble-

some than a vorton formulation. When using vortons, as already shown in

§2.4 arises a new error source due to the core radius. If it is not strictly re-

quired using vortons then choosing between a vorton wake and a panel wake

means to trade-off between a faster or a more accurate way to calculate it.

If it is done the hypothesis that the object is not discretized and that it is

known its exact velocity field and wake singularity distribution at each instant

then it is possible to assume that the error bound to the spatial discretization
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is null. However it is still standing an error bonded to the discretization of the

time ∆t. In this case, if it is desired to compute the trajectory of a particle,

there is a local error approximation ǫL ∝ (U∞∆t)p+1. Actually the power

p depends upon the time integration scheme, as an example p = 1 if the

integration scheme is a FWE. Another example is the RK2 time integration

scheme, about which it is known that p = 2 [71]. So far have been listed other

error sources, which come together with this last one just listed, therefore it

is desirable to choose a coherent time integration scheme, acting differently

could result into wasted effort of code programming.

Choosing a coherent time integration scheme for an unsteady panel method

means also to make a coherent choice about moving first the fluid particles or

the moving solid objects. Until the particles are passive, moving first them or

the objects just means creating a different starting error, once it is done the

first movement the sequence is the same and then the approximation error is

comparable. If it is assumed that there is no wake and the particle is assumed

to be passive, the approximation error of its path can be considered a linear

sum of the approximation errors of the adopted time integration scheme and

that of panel model.

However it is required to remove the assumption of passive fluid particle,

since the interest is towards the interaction between the wake and bodies. Do-

ing this means to introduce another non linearity bound to the wake because

the vortons and the bodies have mutual influence. Therefore the approxima-

tion error is still a function of the approximation errors of the adopted time

integration scheme and that of panel model, but now this function is no more

linear.

All these sources of error can bring a vorton to penetrate a body, in a

way which is going to be shown in the next sections. Since this situation is
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non physical when it is assumed the impermeability of the bodies, an in-out

check is both a mean to control if the error has unacceptably grown and the

first step to take when dealing with vortons.

Another way to control this error is to act over the sources, doing such

things like reducing the time step ∆t or the panel area ∆S, using high order

panel models, but this is not cheap. Using an high order panel method in

place of a low order one, like a panel method with quadrangular panels, means

to accept a greater computational time and a more accurate programming.

Since it has just been explained that the error induced by panel discretization

and time step are connected through the vortons, in order to preserve the

benefit of the better accuracy it is necessary to pay attention at the coherence

between the panel method and the time integration scheme. This means that

it is not possible to upgrade an existing panel method through small changes,

if it is desired a more accurate panel method there is need for a major re-

organization of the code.

Even if it is done everything it is required to achieve the better accuracy

the time cost could not be affordable. Considering the case of a panel method

used for initial design purposes, the time cost is not affordable because dur-

ing an initial design phase it is required to execute the greatest number of

operations in a given time, especially if during this phase it is working by

comparisons. Fulfill more restrictive accuracy requirements is the target of

a more advanced state of the design process, during which it is questionable

the use of a panel method.

All these problems are interconnected and share being caused by the error

of numerical integration. Thus they also exist in 2D cases, although there are

some discounts, such as a direction of integration and an easier way to assign

the Kutta condition. This means that it is at least possible to qualitatively
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establish what errors can occur into a given 3D panel method using a simpler

but still coherent with it 2D analysis.

In order to gain a better insight with particles behavior, it is now spec-

ified, once for all, that the analyses done into this chapter required a 2D

Douglas-Neumann source panel method, a simple code created with Matlab,

with two different time integration schemes, one is the FWE and the other

one is a RK2, with particles moved before the body. The main subject is

understanding how dealing with vortons since this is still an open problem,

the details of the tests are reported into the next sections. It is needed un-

derstanding, at least qualitatively, if the number of penetrating vortons is

limited or not. In a positive case it can be concluded that it is acceptable

to delete a few vortons into a whole flow field without sensibly changing the

accuracy of a 3D panel method if this models the bodies with quadrangular

panels and the wake with vortons moved by a FWE time integration scheme.

3.2 The intersecting vortons problem

The intersecting vortons problem must be considered, because it is not

due to a particular discretization, but to the discretization itself. It can be

taken a simple 2D example, a vertical line of passive particles subject to a

steady uniform flow with a velocity equal to 1m/s, placed at x = −6m from

the origin, going towards a non moving, impermeable, non lifting cylinder

centered with the axes origin, choosing a simple FWE time discretization and

a ∆t = 1.458sec. As it can be seen in figure (3.1d) some particles entered

into the cylinder after some time-steps. This is an error since it has not been

respected the condition of impermeability and worse, the wrong position feels

a velocity induction which will not allow the particle to approach again the
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true position within any reasonable tolerance. In figure (3.2) it is shown the

same case, the only change done is the time step which has been divided by

four.

This is of course a problem of numerical inaccuracy, and most often (but

not always) can be solved adopting a smaller ∆t. Now it is taken as an

example the case shown in figure (3.3), where are considered some particles

disposed along the y axis, the circle is moving with a velocity equal to −1m/s

in the x direction and with −cos(t) law in the y direction, the time-step is still

∆t = 1.458sec. As in the previous case the particles are incorporated by the

circle. When the algorithm reaches the situation shown in figure (3.3d) the

circle is incorporating some particles, and then computes the new position of

the particles, as can be seen in figure (3.3e). In this figure it is clear that the

position update done to an incorporated particle is wrong. In figure (3.4)

it is shown the same case, the only change done is the time step which has

been divided by four.

Using a smaller ∆t is a possible solution, but it cannot be in general

the solution because of some theoretical and practical problems. The first

theoretical observation is due to the convergence property of the integration

scheme. It is well known that it is possible to correlate the error of a conver-

gent integration scheme and an infinitesimal integration step, a time step in

this case. Usually the smaller is the ∆t, the smaller is the error. But this is

not always true and this is the first theoretical problem. Another theoreti-

cal problem is the following. Calculating a particle position in various time

steps equals performing an integration over the time of a velocity function.

Also the stability property depends upon the adopted discretization and the

analyzed case, and since it is known that it is not always true that a scheme

is stable with ∆t→ 0 it is also explained this problem [69][70][71][72].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: 2D passive particles entering into a non lifting circle
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: 2D passive particles non-entering into a non lifting circle after a time-
step reduction
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: 2D passive particles incorporated by an oscillating, non lifting circle.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: 2D passive particles not incorporated by an oscillating, non lifting
circle after a time-step reduction.
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The practical problem is that sometimes the timestep is frozen by other re-

quirements that fall outside the user’s ones, or simply because the smaller

is the timestep the bigger is the elaboration elapsed time, which could go

beyond reasonable values.

This means that there are two ways to solve the problem of the inter-

secting vortons. The first solution, given the time-step, is to find a time

discretization scheme which does not suffer the problem. The second solu-

tion is to create a warning mechanism which reacts with a countermeasure

if the problem happens. The two solutions do not exclude each other, how-

ever, as written in the above section, the first solution needs an approach

different from the upgrade of an existing code, therefore it is not going to be

considered in this work.

3.3 The penetrating particle check

Creating a penetrating particle check means creating a simple mechanism

to deal with particles. Whatever way it is dealing with particles the first

step is avoiding them penetrating, or, if this is not possible, checking when

they enter. Once it has been checked that the particle has entered it can be

deemed appropriate to delete the particle, or to correct anyhow its trajectory,

or, if it is not a passive particle, to somehow distribute or not the convected

information. However, any decision is deemed the most appropriate cannot

prescind from first checking if the particle has entered or not. This check

mechanism has to fulfill the following requirements:

• Low computational time costs

• Simple implementation into Panel methods
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In figure (3.5) it is shown an irregular, 2D body paneled with irregular

panels. Full points represent the knots of the body, the emptied points

represent the panel centroids. The only vector represented in figure implies

that all the normal vectors of the panels must point outwards from the body.

A C

Figure 3.5: Irregular, 2D body paneled with irregular panels.

The penetrating particle check requires as input data the normal vector,

the panel centroid and the list of adjacent panels per each panel and the

coordinates of the point A, which is evaluated. To establish whether the

point A is inside or outside it is evaluated the distance from every panel

centroid (the dashed lines); once it is estimated which is the closest centroid,

this point is named C and the panel which belongs to it is going to be used

to do the inside-outside evaluation.
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Thus, known the vector ~CA, it is projected along the panel unit vector

belonging to the same panel of the point C. If the result is positive, then

the point A is outside the body (figure (3.6a)), otherwise this evaluation

is repeated and crossed also considering the adjacent panels. If there is at

least one panel giving an outside answer (figure (3.6b)), then the point is

considered outside, otherwise it is inside (figure (3.6c)).

This type of evaluation is rudimental, therefore it should be used care-

fully, but it is really simple to implement into panel methods and its input

data are all already available since they are created in previous calculations

done by the main parts of a panel methods code.Once evaluated that the

particle is inside, a possible countermeasure is to divide by two the main

timestep creating a secondary timestep, update the particle position using

the secondary timestep until the sum of the secondary timesteps has reached

again the main timestep and re-check if the particle is still inside: in positive

case, iterate, in negative case, the main timestep is restored. This approach

has been used in the next section but it is anticipated that it is poor. Other

two possible treatments of the penetrating particle are shown in figure (3.7),

and will be considered in the next chapter.
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A

(a) Point A is outside

A

(b) Point A is outside

after the cross check

with the adjacent pan-

els

A

(c) Point A is inside

Figure 3.6: The penetrating particle check.

95



Inviscid flows of particles

A

(a) Vorton deletion

A

A'

a

0.1
0a

(b) Vorton replacement

Figure 3.7: The possible options for penetrating vortons treatment
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3.4 Particle trajectories in a flow induced by

a non lifting circle, moving at uniform

speed

In this section it is analyzed the flow induced by a non lifting circle,

moving at uniform speed. The circle is approximated by thirty-two equally

dimensioned source panels. It has been chosen this number of panels because

it is gives a panel length to chord ratio comparable to that of the 3D cases

analyzed in chapter five. Usually the panels are not equally spaced, the

leading edge panels are smaller than the other ones, but this is done because

it is necessary to respect a given ratio between curvature and panel size in

order to well represent the flow. Since the circle is a geometrical figure with

the property of being a constant curvature figure it is better to equally size

the panels. In figure (3.8) it is shown a sketch of the flow induced by a

circle moving with uniform speed. In all the tests executed in this chapter

the circle velocity in the x direction is assigned and equal to U∞ = 1m/s,

together with the circle radius which is unitary. Thus these two data are

considered assigned and they shall not be repeated from now on.

The main interest in this work is the interaction between the wake vortons

and the bodies immersed into this wake and the related problems. Part of

these problems, as already seen in the above sections, is the fact that in

some conditions even passive particles can enter into solid bodies, and this is

an evident error in particle trajectory calculation. Therefore in this section

the interest goes towards the trajectory calculation using two different time

integration schemes, the RK2 and the FWE. Since a trajectory computed

with the first scheme is far more accurate than the same one computed with

the second scheme, the trajectories calculated with the RK2 scheme are used

97



Inviscid flows of particles

Figure 3.8: A sketch of the flow induced by a non lifting cylinder, moving at
uniform speed
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as a comparing term to probe the quality of those computed with the FWE

scheme, once shown that it is proper to do so. All of this it is done in order to

understand if there are just a few particles which enter or not into the body.

Once understood this, since the problem in how dealing with vortons is still

open, if they are just a few the error introduced by their simple deletion is

comparable to the other errors which afflict a low order panel method.

3.4.1 The reference trajectories

As already written above, it has not been found any bibliographical ref-

erence about an analytical function r(t) of a particle moving into this flow

to be directly compared to a numerical trajectory computed with a FWE

time integration scheme. Therefore it has been developed the Appendix B

to know what is the final position of a particle in this flow, when the cir-

cle has arrived far downstream. In figure (3.8) are pictured some quantities

used in this appendix useful to compute the (3.2), which plays a key role.

The radius of a circular plane of marked particles is named Rmax, xt0 is the

initial separation between the center of the moving object and the plane of

marked particles, positive as shown in figure, yt0 is the starting y coordinate

of a particle belonging to the marked plane of particles, X and Y are the dis-

placement coordinates respectively in the x and y direction, R is the radius of

the moving circle. The equation (3.2) is important because the displacement

X also coincides with the x coordinate of the final position of the particle,

while the y coordinate is yfin, not Y .

yfin = y

(
1− R2

r2

)
(3.1)

X =

∫ π

θ0

R2(1− 2sin2θ)r

R2sinθ + ryfin
dθ (3.2)
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About the (3.2) it is important to know that X is a function of xt0 and

of yt0, and that into the integrand θ is the integration variable and it is also

the independent variable of the functions r and yfin
1. It is also important

to know that the circle is moving along the x axis. If Rmax goes to infinity

it is possible to compute DP the partial drift volume, and if also xt0 goes

to plus infinity DP = DV where DV is the Lagrangian drift volume. The

existence of these volumes (areas in a 2D case) is related to the fact that

when a solid object passes through a plane of marked particles they tend to

be displaced when the object has arrived far downstream 2. The Lagrangian

drift volume DV is equal to the volume corresponding to the added mass of

the body, in this case it is the area of a unitary radius circle. It is always

DP < DV because when xt0 is not plus infinity there are some particles into

the marked plane which assume X < 0, while when xt0 is plus infinity there

are only particles into the marked plane which assume X > 0 [73] [74] [79].

Dp =

∫ ∞

−∞
Xdy (3.3)

To check if the trajectories computed with a 2D Douglas-Neumann panel

method with a RK2 time integration scheme is a good reference for a com-

parison with the trajectories obtained from the FWE scheme it is needed

analyzing the (3.3). To build the figure (3.9) the marked plane of infinite

radius has been replaced with a distribution of passive particles which span

along the y axis, between y = −12m and y = 12m, equally spaced but in a

variable number, corresponding to the abscissa in figure. The drift area is

reported on the ordinate axis, it is computed via a trapezoidal integration

of the (3.3), given the final position of the particles. The plots with circle

1See the Appendix B and the symbology to know their meanings
2See Appendix B and bibl. [73] [74] for the details
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markers match the integration of the (3.3) using the final particle positions

computed with the (3.1) and (3.2); since the (3.2) applies when the mov-

ing circle has arrived far downstream these plots are labeled in legend with

“∆t = ∞”. Instead the plots with “x” markers correspond to the case using

as final positions those extracted from the numerical RK2 trajectories of the

particles after a finite elapsed time, reported in legend. These trajectories

have been computed using a time-step ∆t ∼= 0.01. The legend also reports

the xt0 quantity. In figure (3.9) it is shown that the trends given by the

points created from the RK2 trajectories give area results of lesser entity

than the analogous given by equations (3.1) and (3.3). This is due to the

fact that computing a numerical trajectory it is not possible to assign an in-

finite elapsed time tel. However it is clear that the plots are trending towards

the exact Lagrangian drift area value, which is about 3.14m2.

Figure 3.9: Trends of the Lagrangian drift areas, based on the equation (3.2) and
on the numerical trajectory calculation
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In figure (3.10) the red line represents the numerical integration of the

(3.2), therefore it represents the position of the particle when the circle has

arrived far downstream, in this case it is xt0 = 12m. This figure indicates that

the displacement can be either positive or negative, as already anticipated

above. However the axes are not scaled in order to show that this negative

displacement has a curvature which brings the displacement at zero when yt0

goes to infinity, as it should be expected by the reader.

Figure 3.10: Final positions of the particles induced by a circle moving at

uniform velocity and starting at 12m from the marked plane of particles

In figure (3.11) the red line has the same meaning which has in figure

(3.10), instead the blue lines are trajectories computed assuming that the

overall elapsed time is tel = 24s and it is xt0 = 12m again. These trajectories
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are computed assuming a time step ∆t = 0.0625s and using a RK2 time

integration scheme. During preliminary tests smaller time steps did not give

remarkable differences. Moreover, observing figure (3.11), there is a small

gap between the red line and the final position of the trajectory, because to

compute a trajectory it is needed a finite elapsed time, which means a finite

traslation of the circle, while the red line is related to an infinite traslation of

the circle. Finally the shape of the trajectories is similar (but of course not

coincident) to those in [74]. These checks show that it is proper to compare

the trajectories computed with a FWE integration scheme with the analogous

done with the RK2 one, provided these trajectories use a sufficiently small

∆t.

Figure 3.11: The particle trajectories induced by a circle moving at 1m/s

and starting at 12m from the marked plane of particles
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3.4.2 The effects of the time step on the trajectory

computation

The common data used to compute the trajectories in this subsection

are the overall elapsed time tel = 24s, U∞ = 1m/s and xt0 = 12m, the

red and the blue lines plotted into the figures of this subsection have the

same meaning of those plotted in figure (3.11). Due to the symmetry of the

problem the figures into this subsection should be seen as symmetrical to the

x axis.

Figure 3.12: Comparison between the particle trajectories induced by a circle

moving at 1m/s and starting at 12m from the marked plane of particles, with

indicated time step

The first comparison is done in figure (3.12), the chosen timestep into
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the FWE plot is ∆t = 0.0625s. The confrontation between the trajectories

computed with the RK2 scheme and and with the FWE scheme indicates that

the numerical error of the external trajectories computation is negligible, the

trajectory which is closest to the x = 0 line has a contained error. After

all the time step ∆t = 0.0625s is very small, and unfortunately to keep

reasonable the time required for the calculations in a 3D simulation it is

needed to use larger time steps. The required calculation time, excluding

the time required to create the graphical output, has been tcpu = 25.407s for

the RK2 trajectory and tcpu = 11, 453s for the FWE trajectory. The ratio

between these calculation times is almost two because actually a RK2 scheme

iterates twice a FWE scheme. As it could be expected there is a trade-off

between solution accuracy and calculation time.

Repeating the required calculations to evaluate the particle trajectories

induced by the moving circle with larger timesteps yields the figures (3.13)

and the (3.14), where the time-step is respectively ∆t = 0.5s and ∆t = 1.5s,

and the calculation times are tcpu = 1.640s and tcpu = 0.765s. Instead the

RK2 plot still employs ∆t = 0.0625s

Using the intermediate time step ∆t = 0.5s the error compared to the

previous case is growing, as expected, but there are not further consequences,

while using the coarsest time step ∆t = 1.5s has happened what has been

anticipated in §3.2. In figure (3.14) some particles penetrated the body,

therefore their trajectories become affected by an unacceptable numerical

error. A first attempt to rectify this error is to verify, in the same way

described in §3.2, if the particle is or not into the body, and if it is inside,

the main time step is halved until the updated position is again outside the

body, then it is restored the main timestep.

The results of such approach are shown in figure (3.14). The result is poor,
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Figure 3.13: Comparison between the particle trajectories induced by a circle

moving at 1m/s and starting at 12m from the marked plane of particles, with

indicated time step
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Figure 3.14: Comparison between the particle trajectories induced by a circle

moving at 1m/s and starting at 12m from the marked plane of particles, with

indicated time step

107



Inviscid flows of particles

and does not justify the above described manipulation of the timestep.

The plots using the intermediate time step ∆t = 0.5s are interesting

because there is a peculiar ratio between this time-step multiplied by the

circle speed and the circle diameter, which can be seen as a chord. This ratio

is equal to 4 and is typical of 3D uses of the panel methods. Therefore, if the

particle is a vorton, it is still verified if the particle is inside or not the body,

but the time step manipulation is substituted with a simple deletion of these

particles. The reason of this is that the problem in how dealing with these

vortons is still open, and the vorticity field of the wake is not altered too

much until the deleted particles are few, as it has just been verified. Thus

here it has just been chosen the simplest approximation. A forward euler

scheme is of course more approximative compared to other schemes, but the

use of more accurate schemes requires more calculation time, which is not

the goal of a fast preliminary design tool.
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Chapter 4

WAKE-BODY

INTERACTIONS

The goal of this chapter is to analyze the interaction between the wake

shed from an upstream body which flows over a downstream body. This

analysis is done examining two test cases. The first one is a wake inter-

action between a pitching and heaving wing and a fixed downstream wing,

the second one is a wake interaction between a propeller and a wing sec-

tion. These numerical test cases have been run with an unsteady, three-

dimensional, low-order and multi-body solver named PaMS (Panel Method

Solver) which uses panels when modeling the bodies and a panel-vortons

combination when modeling the wake. Another goal is also to understand if

some of these particles, the vortons, penetrate or not the body and if this has

remarkable effects over the results. As already shown in section §3.1 there are

some causes which induce numerical error in particle path calculation. Since

the effects have only been shown over passive particles now it is required to

analyze the effects of these errors if the particles are active.
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4.1 PaMS code description and recent changes

PaMS (Panel Method Solver) code is an open source software for the

resolution of potential flow fields by means of the panel method technique.

This code has been developed at DIAS in order to own a satisfactory analysis

and design tool, focusing on a drastic reduction of the costs, in terms of

overall time, resources and man power, by using unstructured grid with both

quadrilateral and triangular panels, and by introducing a wide variety of

boundary and closure conditions, including the existence of an air/water

interface to perform a variety of aeronautical and naval fluid dynamic time-

dependent computations. A feature of the PaMS is the capability to use

a numerical representation of CAD designs, making unnecessary steps like

the geometry treatment and paneling when an acceptable CAD model is

available. This feature allows a greater simplicity and swiftness during the

paneling without altering the result accuracy, and improves the quality of

the body discretization since a CAD model is often far more accurate than

the panel model useful for aeronautical purposes.

Another simplification arises from an option which consents to panel sep-

arately different parts of a same ensemble (for example the wing-fuselage

group of an airplane) and to reposition these parts on the basis of specific

needs. As an example, this option is useful for the treatment of eventual

intersections between two or more bodies.

Another important characteristic is the computation of pressure loads

directly in the grid points, through a reconstruction technique and deriva-

tion of the potential function. The availability of pressure values correctly

computed in the grid points consents the coupling between a fluid dynamic

solution with another solution obtained from structural analysis solvers using

the same paneling. Moreover, due to some routines able to manage possible
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deformation of the bodies in time, the PaMS code is simple to use also when

computing unsteady fluid-structure interactions, in such cases as aeroelastic

problems (like the sails).

The PaMS code is also able to interface itself with other commercial

softwares, further improving its effectiveness. PaMS is capable of directly

interfacing with some of the most diffuse commercial softwares like Gambit,

Nastran, Hypermesh, Tecplot, allowing the best post-processing and putting

the PaMS code in ideal conditions to increase its performances. This code has

been used to solve a number of scientific and technical, steady and unsteady

problems. It seems capable to perform complex simulations coupled to both

structural and dynamics methods and/or by introducing deformations due

to fluid dynamics loads [15].

As already written in the previous chapter there is a chance that vortons

can penetrate bodies under some conditions, therefore the PaMS code has

been changed introducing the check described in §3.3. Up to now it has not

been explicitly exposed what is to be done once it is executed the check,

now it is mandatory to decide what to do with these penetrating particles.

A simple decision is to delete them (see figure (4.1a)). However, since a

necessary condition to consider acceptable the deletion of wake vortons is that

there are just a few of them which penetrate, it is needed to test first if there

are unacceptable calculation errors. Another option is the following. Once

executed the check, the penetrating vorton is replaced outside again. The

normal direction belonging to the panel which is closest to the penetrating

vorton is an information already available. Thus the vorton is replaced along

this direction at a distance equal to 0.10 times the mean size of the reference

panel (see figure (4.1b)). Since both options are going to be used it will

explicitly be reported which one is currently used.

111



Wake-body interactions

A

(a) Vorton deletion

A

A'

a

0.1
0a

(b) Vorton replacement

Figure 4.1: The possible options for penetrating vortons treatment
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4.2 Wake interaction between a pitching and

heaving airfoil and a fixed downstream

airfoil

The ideal flow theory allows to calculate the aerodynamic characteristics

of wing sections, even though the simplifying assumptions limit its applica-

bility. Moreover, T. Theodorsen developed a theory, valid if the flow field is

linear and potential and the airfoil is thin, which computes the airfoil aerody-

namic characteristics if an isolated 2D wing section is pitching and heaving

[80]. Other references to be considered are [81] [82] [83] [84] [85] [86].

The airfoil examined in this section is the NACA 0012 and it is pictured

in figure (4.2). Actually the flow model upon which are based panel methods

is linear and potential and the NACA 0012 airfoil is thin, thus it is possible

to analyze an isolated NACA 0012 airfoil using Theodorsen’s theory. As

already said above, PaMS is a 3D solver, thus, in order to gather 2D airfoil

information from such codes, it is required to execute runs using large Aspect

Ratio (AR) wings, in order to reduce 3D induced drag effects, and take these

informations from the wing mid-section. This effort allows the comparison

with 2D data or theories. If the comparing term is Theodorsen’s theory, the

wing must be isolated.

The pitching and heaving wing, whose aspect ratio is AR = 24 and its

chord length is 1m, is straight rectangular and is mounting a NACA 0012

airfoil. The 2D lift coefficient of this simulation is compared to the analyt-

ical results obtained using Theodorsen’s theory for an analogous oscillating

airfoil. In figure (4.3) it is evident the good agreement between these two

results, thus it is shown the method accuracy in representing the unsteady
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vorticity in the wake. The pitching and heaving equations are the following:

β(t) = βa sin(ωPHt+ φPH) = 10◦ sin(ωPHt− 90◦) (4.1)

h(t) = ha sin(ωPHt) = 0.25 sin(ωPHt) m (4.2)

The pitching motion is about a point on the airfoil chord at a distance 1/4

of the chord from the leading edge, β(t) is the instantaneous angle measured

clockwise from the mean chord, βa is the amplitude of pitching oscillation,

φPH is the phase angle ahead of the pitching motion and ωPH = 2U∞/ck is

the frequency related to the so called reduced frequency k, the period related

to this frequency is 16secs. The heaving motion is only vertical, h(t) is the

instantaneous vertical shift from the mean position, ha is the amplitude of

the heaving oscillation.

Figure 4.2: NACA 0012 airfoil geometry

The PaMS code with vorton wake has already been tested and resulted

successful when it computes data for isolated bodies, thus are not required

other tests on isolated bodies (see Bibl. [64]). Now the attention is focused

on the behavior of the PaMS code with the DIAS vorton wake model when
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Figure 4.3: NACA 0012 airfoil - comparison between the lift coefficients resulting
from the numerical analysis data and the Theodorsen’s theory about the pitching
and heaving motion
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the wake of a pitch-heaving wing intersects with downstream fixed wing. The

pitching and heaving wing is the same as before, the downstream body is a

straight rectangular wing with the same aspect ratio and airfoil of the up-

stream oscillating wing. In order to analyze the effects due to the oscillating

wing wake on the downstream wing, the lift coefficients resulting from this

simulation are analyzed.

Figure (4.4) shows the lift coefficients for the upwind and downwind wing

mid-sections. It is well known that a NACA 0012 airfoil is symmetrical, so, if

an isolated airfoil is exposed at null angle of attack there is no net lifting force

or pitching moment. Considering figure (4.4), as the wake approaches the

downwind airfoil, the lift coefficient raises, and when the wake is gone beyond

the airfoil the lift coefficient has became a periodic function which has the

same frequency of the normal force oscillation of the upstream airfoil. The

maximum value of the lifting coefficient on the non oscillating airfoil verifies

when are approaching those vortons released from the upstream wing when

its normal force value is maximum. Moreover, in figure (4.4), during the

time interval between t = 41.5secs and t = 41.75secs, there is a small but

visible periodic irregularity. Observing a time period between t = 41secs

and t = 41.75secs, shown in figure (4.7) it is clear that the vorton deleting

mechanism is working, and the irregularity happens when vortons are deleted.

In chapter 4 it has already been shown that reducing the time step is a way

to avoid particles penetrating, however reducing the time step in order to

adjust a single or a few points in a graph is not very useful, better solutions

would be or a proper post-processing or treating the penetrating vortons

differently. Another periodic irregularity happens at t = 33.5secs, it shares

the same nature with the previous one, thus it is no further discussed.

In section §4.1 have been shown two options if a vorton has penetrated

116



Wake-body interactions

the body, deletion or replacement. Now if it is taken the second option,

the replacement, there is no more the previous vorticity loss due to vorton

deletion. Referring to the pitch-heaving airfoil, swapping between these two

techniques is pointless, in figure (4.5) the graphs are superimposed. Instead

in figure 4.6, where the attention is focused on the fixed airfoil, the graphs

are almost superimposed, using the vorton replacement technique cancels the

irregularities in the graph.
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Pitch-heaving airfoil, vorton deletion
Fixed airfoil, vorton deletion

Figure 4.4: The lift coefficients of a pitching and heaving NACA 0012 airfoil and
a downstream fixed NACA 0012 airfoil
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Figure 4.5: The lift coefficients of the pitching and heaving NACA 0012 airfoil,
obtained using different vorton treatments
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Figure 4.6: The lift coefficients of the fixed NACA 0012 airfoil, obtained using
different vorton treatments
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Figure 4.7: NACA 0012 airfoil - Example of vorton deletion
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Figure 4.8: NACA 0012 airfoil - Example of vorton replacement
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4.3 Wake interaction between a propfan and

a wing section

The experimental data of this test case are taken from a set of tests con-

ducted at the NASA Langley Research Center in its 16 Foot Transonic Tun-

nel, whose details are reported into the references [87] [88] [89] [90] [91] [92]

[93] [94]. It is considered an underwing nacelle integrated into an unswept,

untapered, supercritical wing model, mounted on the wind tunnel support

structure, completed with a powered propfan. The airfoil mounted on the

wing is the 10 percent-thick NASA supercritical airfoil 33, whose details are

reported in [90]; it is publicly available and the interested reader can con-

sult it. The wing chord is one foot in length, and it had approximately 350

pressure taps to measure static pressures, their chordwise locations are the

same all the way across the wing, while the spanwise locations are symmetric

about the centerline of the propfan. Figures (4.9) (4.10) and (4.11) show the

geometrical details of the SR2-wing-nacelle model.

The SR-2 propfan is 12.5 inches in diameter (d), has eight blades and its

rotation verse is clockwise as viewed from the rear. As stated in [94], there

are doubts about the propeller blade shape, thus the numerical simulations

run in PaMS use the data available in this report, labeled in table (4.1).

The meanings of the symbols shown into label heading are reported in the

“Symbols and Acronyms” section.

Now are exposed the input data of the numerical test run with the PaMS

code. The stream angle of attack used into the numerical run is AoA = 0°,

which agrees with the experimental setup of reference [87]. In reference [87]

the flow is at a Mach number M = 0.7, instead the numerical test has been

run using V∞ = 1m/s, thus the output data referring to the wing need
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r/R τ c/d β CL,design Airfoil

.235 .190 .1438 24.0 -.25 NACA 65

.250 .160 .1440 23.0 -.20 NACA 65

.300 .100 .1442 18.9 -.05 NACA 65

.350 .074 .1460 15.7 .04 Transition

.400 .059 .1480 12.5 .09 Transition

.450 .051 .1488 10.5 .13 Transition

.500 .044 .1500 8.6 .15 Transition

.550 .038 .1498 6.9 .16 NACA 16

.600 .033 .1485 5.0 .17 NACA 16

.650 .030 .1475 3.5 .16 NACA 16

.700 .026 .1460 2.0 .15 NACA 16

.750 .024 .1443 0.5 .13 NACA 16

.800 .023 .1420 -1.0 .10 NACA 16

.850 .022 .1360 -2.5 .08 NACA 16

.900 .021 .1280 -4.5 .06 NACA 16

.950 .020 .1120 -5.7 .03 NACA 16

.975 .020 .0940 -6.2 .015 NACA 16

Table 4.1: SR-2 propfan, geometrical data table.
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Figure 4.9: Planform of the SR2-wing-nacelle model

Figure 4.10: SR2 test case CAD model
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Figure 4.11: NASA 10 percent thick supercritical airfoil 33

post-processing, which will be explained later. The thrust coefficient, CT , is

defined as in equation (4.3), where T is the propeller thrust, d is the propeller

diameter and n are the propeller revolutions per second, in reference [87] it

is CT = 0.245.

CT =
T

ρn2d4
(4.3)

In this reference are not clear the details about the propeller advance

ratio J = V∞/(nd) or the blade pitch angle β at a given station, thus it

has been set β = 52.5◦ and in order to achieve CT = 0.245 it has been

chosen J = 2.423 (corresponding to 1.3rps). The employed advance ratio

has no matches into the other bibliographical references, but the same CT

can be achieved using different combinations of advance ratio and blade pitch

angle, thus in reference [87] and in this work it is considered more important

to work at a given CT . Since the flow used into the experiment described

in [87] is at a Mach number M = 0.7 are expected compressibility effects

over the propfan and the wing. Recalling a result about actuator disks [58],

it is known that the compressibility correction alters sensibly the CT only
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if the blade loading is sufficiently high. Thus it has not been applied any

compressibility correction to the local forces acting over the propeller blades,

even if panel methods are based upon the incompressible fluid hypothesis,

since the blade loading is small in this case. Instead the data related to the

wing, obtained under the incompressible flow hypothesis, are corrected using

Karman and Tsien’s correction, since there is a global compressibility effect

over the wing when the flow is coming at M = 0.7. The good agreement

between numerical and experimental data shown in figures (4.13) and (4.14)

justifies the following fact: the dominating flow conditions are given by CT

and M .

Figures (4.13) and (4.14) show the the CP comparisons between the ex-

perimental data of reference [87] and the numerical output of the PaMS

code. Since PaMS code is an unsteady solver, then its data output is also

unsteady, therefore the plotted data have been first time-averaged. Moreover,

the PaMS code is based upon the potential flow model, which assumes the

incompressible fluid hypothesis, then it is needed a correction before com-

paring PaMS data with the available experimental data. This correction is

given by the Karman-Tsien formula, reported in equation (4.4).

CP,comp =
CP,inc√

1−M2 +
CP,inc

2

(
M2

1+
√
1−M2

) (4.4)

The propfan wake generates two main effects on the downstream wing,

an upwash effect on the wing side of station 4 and a downwash effect on the

wing side of station 8. During this run it has been used the vorton deleting

option, and since there is a good agreement between the experimental and

numerical data, the choices done about CT and the vorton deleting option can

be confirmed as good choices. At this flow Mach number the experimental

data suggest that the wing is in a transonic flow state, thus it is not correct
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Figure 4.12: 3D view of the SR2-wing-nacelle model
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Figure 4.13: Comparison between PaMS output data and experimental data at
station 4.
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Figure 4.14: Comparison between PaMS output data and experimental data at
station 8.
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to use the Karman-Tsien correction in presence of shock waves. The sonic

pressure coefficient C∗
P , given by equation (4.5), is about −0.78, this value is

confirmed in [90].

C∗
P =

2

γM2



(
1 + γ−1

2
M2

γ+1
2

) γ
γ−1

− 1


 (4.5)

The experimental data indicate the presence of supercritical flow at the

leading edge portions of the upper surface of the wing located in the upwash

side of the propeller. However, in spite of the modeling, the CP comparisons

between the experimental and the numerical data show a good agreement.

This agreement is remarkable because it allows to compute the lift coefficient

using a code based upon the potential flow model. A similar supercritical

flow can be found at the leading edge portions of the lower surface of the

wing located in the downwash side of the propeller. These effects are mainly

due to vorticity bound to the propfan wake. If the propfan is left rotating

and the wake is cut off after a few time-steps (see figure (4.15)), the wake

has no more effects over the wing, as it is shown in figure (4.16), where

the difference in pressure distribution is infinitesimal and the CP graphs are

almost superimposed.

In conclusion, the interaction between the wing and the propeller wake is

due to the high energy slipstream, thus even at subsonic conditions certain

portions of the wing section immersed in the slipstream can attain super-

critical Mach numbers. The validity of the subsonic panel methods can be

extended using the Karman-Tsien compressibility correction, however this

level of accuracy is tolerable only during the first stages of the airplane de-

sign process. For more accurate calculations it is better to use other options

than corrected panel methods.
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Figure 4.15: 3D view of the SR2-wing-nacelle model with a very short propfan
wake.
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Figure 4.16: Comparison between PaMS output data at stations 4 and 8, after
the wake removal.
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A vorton wake model into panel methods is capable of modeling wake-

body interaction, correctly estimating the forces acting over bodies: using the

physical criterion that vortons cannot penetrate impermeable bodies it has

been shown, with some examples given by the author, how to apply proper

modifications in panel methods without significantly increasing the required

computational time.

Adding interfacing capabilities in panel methods transform a vorton wake

model into:

• an easy and effective pre- and post-processing design tool

• a fast wake-body interaction analysis tool

• low budget hardware and manpower requirements.

The shown test cases of wake-body interaction demonstrate that in some

circumstances the wake-body interaction sensibly alters the forces acting over

the bodies, thus it cannot be ignored even at early stages of the design

process.

A vorton wake model can now analyze, for example, rolling motion for

aircraft, rotor aerodynamics, multi-body problems and, aircrafts flying in

close proximity. A vorton wake model, if interfaced with an aeroacustical
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model, can estimate noise levels in cabin, completing this class of codes as

useful tools during the pre-design stage of an airplane.
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The solution of Poisson’s

equation

A.1 Derivation of the solution of Poisson’s

equation

There exist different ways to solve Poisson’s equation for the potential

which requires integration over a finite region of interest. For this work,

Green’s second identity which, as shown in chapter 2, is a consequence of the

divergence theorem, allows to write a solution of Poisson’s equation as well

as the Green’s function (defined in unbounded domain) that will be chosen

so as to cause one of the terms in the surface integral to drop out. In this

way, the solution of Poisson’s equation will be composed by an integral over

a finite volume and an integral over the bounding surface.

Consider a closed volume V bounded by a surface S. Let φ1 and φ2 be

scalar fields defined on V and S. The Green’s Second Identity states that

∫

V

(
φ1∇2φ2 − φ2∇2φ1

)
dV =

∫

S

(
φ1
∂φ2

∂n
− φ2

∂φ1

∂n

)
dS (A.1)
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Let’s use this theorem to write the solution of Poisson’s equation. Particu-

larly, let

φ1 = Ψ(r) (A.2)

and

φ2 = G(r, r′) = − 1

4π|r − r′| (A.3)

where r represents the coordinate of the field point and r′ represents the

coordinate of the source point. Let

∇2G(r, r′) = δ(r − r′) (A.4)

where δ(r − r′) is a simple delta function. The Second Green’s Identity

becomes

∫

V

(
Ψ(r)∇2G(r, r′)−G(r, r′)∇2Ψ(r)

)
dV =

=

∫

S

(
Ψ(r)

∂G(r, r′)

∂n
−G(r, r′)

∂Ψ(r)

∂n

)
dS (A.5)

∫

V

(
Ψ(r)δ(r, r′) +

1

4π|r − r′|∇
2Ψ(r)

)
dV =

= −
∫

S

(
Ψ(r)

∂

∂n

(
1

4π|r − r′|

)
− 1

4π|r − r′|
∂Ψ(r)

∂n

)
dS (A.6)

If r′ lies in the volume V , then

Ψ(r′) = −
∫

V

(
1

4π|r − r′|∇
2Ψ

)
dV+

− 1

4π

∫

S

(
Ψ(r)

∂

∂n

(
1

|r − r′|

)
− 1

|r − r′|
∂Ψ(r)

∂n

)
dS (A.7)

By supposing to have Dirichlet boundary conditions on some surface, let

that surface be S, so V will be the enclosed volume. Moreover, choose a
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homogeneous solution to add to G(r, r′) so that it will be zero on the whole

surface S. Thus, the surface integral term is always zero, and there is no need

to know what the normal derivative of the potential is, therefore

Ψ(r′) = −
∫

V

∇2Ψ

4π|r − r′|dV (A.8)

As regard the vector velocity potential, this is governed by the Poisson’s

equation. Furthermore, substituting ∇2Ψ = −ω in the above relationship

and considering the unsteady nature of the problem, the velocity vector po-

tential due to vorticity in the domain results:

Ψ(r, t) =
1

4π

∫ ∫ ∫

V

ω

|r|dV
′ (A.9)

The velocity induced by vorticity can be obtained by taking the curl of the

above equation:

∇×Ψ(r, t) = ∇× 1

4π

∫ ∫ ∫

V

ω

|r|dV
′ (A.10)

Similarly, the gradient of the velocity term used for the vorticity stretching

in the vorticity evolution equation is determined by taking the gradient of

the above relationship:

∇ (∇×Ψ(r, t)) = ∇
(
∇× 1

4π

∫ ∫ ∫

V

ω

|r|dV
′

)
(A.11)
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The Lagrangian Drift

In this chapter it is explained what is the lagrangian drift effect in invis-

cid flows. In his note (see Bibl. [73]) Darwin (1953) showed the following

case. A non-lifting body of arbitrary shape moves at uniform speed in an

unbounded, inviscid, incompressible fluid. Initially, the body is infinitely far

upstream of an infinite plane of marked fluid, then, the body moves through

and distorts the plane and, finally, the body is infinitely far downstream of

the marked plane. Darwin suggested that the volume between the initial

and final positions of the surface of marked fluid, the lagrangian drift vol-

ume, which shall be named as DV , is equal to the “volume of fluid associated

with the added-mass of the body”.

Eames, Belcher and Hunt (1994) (see Bibl. [74]) re-examined Darwin’s

work and extended it introducing the concept of partial drift volume, which

shall be named asDP . It is the same as Darwin’sDV but it considers that xt0,

the initial separation between the center of the moving sphere and the plane

of marked particles, is no more infinite but finite and this makes DP < DV ,

thus it was used the adjective “partial”. Eames et al. substituted Darwin’s

arbitrary body with a sphere and introduced a second new lengthscale, Rmax,
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Figure B.1: A sketch of Darwin’s drift volume.

the radius of a circular plane of marked particles. The starting y coordinate

of a particle belonging to the marked plane is named yt0. Depending on

its initial position, the Lagrangian displacement of a fluid element can be

either positive, a Lagrangian drift, or negative, a Lagrangian reflux, the

displacement coordinates are named X and Y . Eames et al. have also found

that it exists only a positive horizontal Lagrangian displacement in the case

of infinite xt0, this justifies the relationship DP < DV .

Similar results can be obtained if the sphere is substituted with a circle

and the flow is supposed 2D. Showing again all the results similar to these

in [74] in the case of a 2D circle is out of the targets of this work, anyway

it is necessary to obtain the final position of a marked fluid particle in order

to compare it to the result of the numerical trajectory computation done in

chapter four.
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Figure B.2: A sketch of partial drift volume.

B.1 Existence of the lagrangian drift effect in

inviscid flows

B.1.1 The particle at the coordinates (0; 0)

In this section it is analyzed the analytical flow induced by a non lifting

circle, moving at uniform speed. In figure (B.3) it is shown a sketch of the flow

induced by a circle moving with uniform speed. In this figure it is pointed

out the circle velocity, U∞, and its starting distance from the marked plane

of particles, xt0. These two data are considered assigned, together with the

radius R

In order to calculate the final position of a marked fluid particle it is first

necessary to observe the behavior of the particle at the coordinates (0; 0) in
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Figure B.3: A sketch of the flow induced by a non lifting circle, moving at uniform
speed
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figure (B.3). Observing the figures (B.1) and (B.3) it looks like this drift effect

is created by particles which tend to follow the moving object, even if this is

an inviscid case. To explain this it is necessary to stop the circle, which was

moving from left to right, to impose to the flow a constant upstream velocity

U∞ oriented from right to left and then to consider how much time elapses

when the generic particle starting at the point A of coordinates (xA > 1; 0)

moves towards the point B of coordinates (1 + ǫ; 0), with ǫ approaching

to zero (see figure B.4). Returning to a situation similar to that pictured

in figure (B.3) it is being asked how much time elapses to reduce at ǫ the

distance xt0 between the marked fluid particle of coordinates (0; 0) and the

front stagnation point of the circle. It will be shown that this time goes at

infinity as ǫ approaches to zero.

Figure B.4: Steady flow past a circle, with referencing to the symbols in §B.1.1

Returning to the situation in figure (B.4) now are done the required cal-
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culations. The particle feels an induced velocity only along the x axis when

moving from A towards B with the following law 1:

dx

dt
= −U∞

(
1− 1

x2

)
= −U∞

(
x2 − 1

x2

)
(B.1)

It is a well known analytical property that to fully invert a function, in

this case the x coordinate in function of the elapsed time t, they must be

biunivocal [77]. It is also well known that a necessary and sufficient condition

for biunivocity is the equation (B.2), i.e. the derivative does never change its

sign nor it reaches zero in any point of the interval [75]. This explains why

it has been necessary to introduce the ǫ.

dx

dt
> 0 (B.2a)

dx

dt
< 0 (B.2b)

Thus equation (B.2) gives the opportunity to biunivocally express t as a

function of x and vice versa and the derivatives of t(x) and x(t) are the inverse

of each other. This also gives the freedom to shift freely the differentials into

equation (B.1), giving the following result:

U∞dt = −dx − dx

x2 − 1
(B.3)

The equation (B.3) can be integrated from point A to point B: in equation

(B.4) tAB is the elapsed time used by the particle to move from A to B, and

it is evident that its boundedness is related to that of the integrals in dx.

The first term in dx into this equation also is a finite quantity, only the last

term is left to be analyzed.

U∞

∫ B

A

dt = U∞tAB = −
∫ 1+ǫ

xA

dx −
∫ 1+ǫ

xA

dx

x2 − 1
(B.4)

1The calculations here are developed assuming that the radius of the circle is
unitary, however the equations shown below can be easily rearranged to include
the constant R, which is the radius of the circle.
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In equation (B.5) it is shown an indefinite integral, with the arbitrary con-

stant omitted (see Bibl. [78]). This can be used to solve the last term into

the equation (B.4), which yields equation (B.6). As ǫ approaches to zero

the last term in (B.4) goes to infinity, as it can be seen in (B.6). Therefore,

turning the attention back at the figure (B.3), the elapsed time to reduce at

ǫ the distance xt0 between the marked fluid particle of coordinates (xt0; 0)

and the front stagnation point of the circle goes to infinity as ǫ goes to zero.

∫
dx

x2 − 1
= ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ (B.5)

∫ 1+ǫ

xA

dx

x2 − 1
= ln

∣∣∣∣
2 + ǫ

ǫ

∣∣∣∣ − ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ (B.6)

B.1.2 The behavior of the particles starting in close

proximity of the cylinder

Then a sort of “potential wake” behavior, using improper words, must be

expected when dealing with particles, even if they are simple passive scalars

in a steady 2D flow. Moreover this approaching to infinity elapsed time

happens also to particles starting in close proximity of the circle.

Referring to the situation in figure (B.5), the particle is starting its motion

over the front stagnation point but it is still very close to it. As limit of

this situation it can be considered the particle moving along the circle at

the same induced velocity which can be probed on its perimeter. It must be

noted that physically at R = 1 there are no particles since those coordinates

are occupied by physical object and since, as it has just been shown, the

particles coming from far upstream are unable to pass the stagnation point.
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Figure B.5: Steady flow past a circle, with referencing to the symbols in §B.1.2

It is well known that the absolute value of the velocity distribution in

polar coordinates upon a non-lifting 2D circle of radius R subject to a uniform

velocity stream U∞ is the following [58]:

|U(R, θ)| = 2U∞|sin(θ)| (B.7)

Then the formula (B.7) can be used to evaluate the elapsed time which a

particle needs when it moves along a trajectory tending to the circle, starting

from the proximity of a stagnation point and going towards the other one.

Taking the upper part of this circle, noting that in this case the problem is

independent from the constant R (which is unitary), it is well known that:

R
dθ

dt
= 2U∞sin(θ(t)) (B.8)

Rearranging equation (B.8) yields the equation (B.9), anyway to do this

operation it should be repeated the above discussion which accompanied
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equation (B.2), but here it is only briefly said that an ǫ is necessary when

integrating between the two stagnation points:

dt =
R

2U∞

dθ

sin(θ)
(B.9)

Integrating the equation (B.9) between the initial position angle ǫ and π− ǫ

yields the time which the particle uses to move from a point to the other:

∫ tel

0

dt = tel =
R

2U∞

∫ π−ǫ

ǫ

dθ

sin(θ)
(B.10)

The following undefined integral solution (see Bibl. [78]) is useful to solve

the finite integral (B.10) (the arbitrary constant is omitted):

∫
dθ

sin(θ)
= ln

∣∣∣∣tg
θ

2

∣∣∣∣ = ln |csc(θ)− ctg(θ)| (B.11)

Solving equations (B.10) using the (B.11) yields the (B.12), which goes to

plus infinity when ǫ goes to zero. This means that a particle on the body

starting very close to a stagnation point and going towards the other one

takes a large amount of time to reach it. This also means that particles

moving along particle paths passing close to the body will be greatly displaced

compared to particles passing far away, as it is shown in chapter four.

tel =
R

2U∞
ln
|csc(π − ǫ)− ctg(π − ǫ)|

|csc(ǫ)− ctg(ǫ)| (B.12)
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Figure B.6: Plot of function (B.12), with R = 1m and U∞ = 0.5m/s

B.2 Final displacement of particles

To calculate the final displacement of the particles when the body moves

towards a marked plane of particles, as shown in figure (B.3), it is easier

to stop the body as shown in figure (B.7). The symbols adopted in this

paragraph are the same of Bibl. [74] except yfin which is used instead of ρ0,

and R which is used again to denote the circle radius instead of a. Then as

reference figures can be taken (B.3) and (B.7).

When time t goes towards infinity the final position of each point is

(−∞; yfin), except the ones starting from (x0 > R; y0 = 0) as shown in the

above paragraph. Below are recalled the potential and streamline functions

valid for a 2D circle, and deriving them properly it is possible to obtain the

147



Appendix

Figure B.7: Steady flow past a circle, with referencing to the symbols in §B.2

equations (B.14)

φ = −U∞

(
r +

R2

r

)
cosθ (B.13a)

ψ = −U∞

(
r − R2

r

)
sinθ (B.13b)

dr

dt
= −U∞

(
1− R2

r2

)
cosθ (B.14a)

dθ

dt
= U∞

sinθ

r3
(
r2 +R2

)
(B.14b)

Using the equation (B.13b), i.e. exploiting the fact that in this case

the particle traces its path line over the streamline, it is possible to create

the equation (B.15), which binds the actual particle position to its final y

148



Appendix

coordinate yfin.

yfin = y

(
1− R2

r2

)
(B.15)

Reworking the equation (B.15) yields the equation (B.16), which resolved

in r gives the equation (B.17) from which is ignored the solution which sub-

tracts the square root term since it would mean a r < 0, which is not accept-

able.

r2 − yfin
sinθ

r −R2 = 0 (B.16)

r =
yfin
2sinθ

+

√
y2fin

4sin2θ
+R2 (B.17)

The formula of Lagrangian drift of the particleX is obtainable integrating

the following integral in the time, remembering that, returning to the moving

circle case, the velocity of the particles is the integrand in (B.18).

X =

∫ ∞

0

(U∞ + φx)dt =

∫ ∞

0

U∞

[
1−

(
1− R2

r2
cos(2θ)

)]
dt⇒ (B.18)

⇒ X =

∫ ∞

0

U∞
R2 (cos2θ − sin2θ)

r2
(B.19)

Using the equation (B.14b) in order to change the integration variable

from dt to dθ and using the equation (B.16) in order to make disappear the

term in r2, it is possible to reshape the equation (B.19) into the equation

(B.20). It has to be noted that in this last equation the variable r is actually

a function of θ. It has also to be noted that due to the symmetry of the

problem it is possible to use the (B.20) with particles starting at (xt0, yt0 < 0),

provided the use of absolute values of the variables θ and yfin.

X =

∫ π

θ0

R2(1− 2sin2θ)r

R2sinθ + ryfin
dθ (B.20)
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Dp =

∫ ∞

−∞
Xdy (B.21)

The equation (B.20) has been used to calculate the final position of a

marked plane of fluid discretized into a finite number of points. Then known

these final positions obtained via a numerical integration it has been done

the numerical integration of the (B.21), in order to witness the fact that if

a body of arbitrary shape moving from far upstream passes a marked plane

of fluid when it has arrived far downstream the drift volume is equal to the

volume corresponding to the added mass of the body, in this case it is the

area of a unitary radius circle [79]. In chapter four it is shown that some

particles have a negative displacement when xt0 is not infinite, however this

negative displacement reduces as when xt0 grows up. Since the integration

(B.21) accounts for the sign these particles give a negative contribution to

the drift volume. This is the reason which led Eames et al. to look for the

causes of this partial drift. However since here the interest is only towards

the drift volume and the final positions, then it is not written more about

this. The interested reader can see Bibl. [73].

Thus in figure (B.8) are reported the trends of the Lagrangian drift areas

subtended by a variable number of particles. Those particles are initially

placed on the y axis, and they span between y = −12m and y = 12m, equally

distributed. Each curve has been built varying the starting distance of the

circle, labeled into the legend. In abscissa are reported the used number of

particles, while in ordinate it is reported the drift area in m2. In figure (B.8)

it is possible to witness that the drift area approaches to 3.14m2 when the

starting position tends to infinity. This is due to the fact that when the

starting position tends to infinity there are no more particles with negative

displacements, or also the greater is the starting distance between the circle
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and the particles the lesser shall be the negative displacement.

Figure B.8: Trends of the Lagrangian drift areas
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